SARS-CoV-2 Testing Strategies in the Diagnosis and Management of COVID-19 Patients in Low-Income Countries: A Scoping Review.

Yuh Ping Chong, Kay Weng Choy, Christian Doerig, Chiao Xin Lim
Author Information
  1. Yuh Ping Chong: School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia. yuh.ping.chong@rmit.edu.au. ORCID
  2. Kay Weng Choy: Northern Pathology Victoria, Northern Health, Epping, VIC, 3076, Australia.
  3. Christian Doerig: School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia. ORCID
  4. Chiao Xin Lim: School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia. chiao.xin.lim@rmit.edu.au. ORCID

Abstract

The accuracy of diagnostic laboratory tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can impact downstream clinical procedures in managing and controlling the outbreak of coronavirus disease 2019 (COVID-19). To assess the effectiveness of laboratory tools for managing COVID-19 patients in low-income countries (LICs), we systematically searched the PubMed, Embase, Scopus and CINHAL databases for reports published between January 2020 and June 2022. We found that 22 of 1303 articles reported the performance of various SARS-CoV-2 detection tools across 10 LICs. These tools were (1) real-time reverse transcriptase polymerase chain reaction (RT-PCR); (2) reverse transcription loop-mediated isothermal amplification (RT-LAMP); (3) rapid diagnostic tests (RDTs); (4) enzyme-linked immunosorbent assay (ELISA); and (5) dot-blot immunoassay. The detection of COVID-19 is largely divided into two main streams-direct virus (antigen) detection and serology (immunoglobulin)-based detection. Point-of-care testing using antigen-based RDTs is preferred in LICs because of cost effectiveness and simplicity in the test procedures. The nucleic acid amplification technology (RT-PCR and RT-LAMP) has the highest diagnostic performance among the available tests, but it is not broadly used in this context due to costs and shortage of facilities/trained staff. The serology-based test method is affected by antibody interferences and varying amounts of SARS-CoV-2 immunoglobulins expressed at different stages of disease onset. We further discuss the effectiveness and shortcomings of each of these tools in the diagnosis and management of COVID-19. Using the LICs as the study model, our findings highlight ways to improve the quality and turnaround time of COVID-19 testing in resource-constrained settings, notably through local/international collaborative efforts to refine the molecular-based or immunoassay-based testing technologies.

References

  1. Trop Med Int Health. 2021 Jun;26(6):621-631 [PMID: 33666297]
  2. Emerg Infect Dis. 2021 Jan;27(1): [PMID: 33261717]
  3. mSphere. 2021 Jan 13;6(1): [PMID: 33441410]
  4. Clin Chem. 2021 Mar 31;67(4):672-683 [PMID: 33788940]
  5. PLoS One. 2022 Jan 20;17(1):e0262178 [PMID: 35051204]
  6. Nat Med. 2022 Sep;28(9):1785-1790 [PMID: 35760080]
  7. BMC Med. 2020 Jun 30;18(1):173 [PMID: 32600414]
  8. J Clin Microbiol. 2021 Jun 18;59(7):e0083721 [PMID: 33903166]
  9. Diagnostics (Basel). 2013 Apr 02;3(2):244-60 [PMID: 26835678]
  10. Heliyon. 2021 Nov;7(11):e08455 [PMID: 34841119]
  11. Int J Infect Dis. 2021 Dec;113:355-358 [PMID: 34757007]
  12. J Multidiscip Healthc. 2021 Jan 27;14:171-180 [PMID: 33536760]
  13. EBioMedicine. 2022 Jan;75:103736 [PMID: 34922321]
  14. J Infect Dis. 2020 Jul 6;222(3):362-366 [PMID: 32473021]
  15. Eur J Clin Invest. 2022 Feb;52(2):e13706 [PMID: 34741305]
  16. PLoS One. 2022 May 10;17(5):e0265334 [PMID: 35536792]
  17. Virol J. 2022 May 2;19(1):77 [PMID: 35501862]
  18. Kathmandu Univ Med J (KUMJ). 2020 COVID-19 SPECIAL ISSUE;18(70):36-39 [PMID: 33605236]
  19. Wellcome Open Res. 2020 Aug 6;5:186 [PMID: 33134555]
  20. PLoS One. 2020 Aug 13;15(8):e0237418 [PMID: 32790779]
  21. J Clin Virol Plus. 2022 Aug;2(3):100091 [PMID: 35761832]
  22. Diagnostics (Basel). 2022 Feb 12;12(2): [PMID: 35204566]
  23. J Infect. 2020 Jul;81(1):147-178 [PMID: 32209385]
  24. Ann Transl Med. 2017 Dec;5(24):500 [PMID: 29299461]
  25. Biosaf Health. 2020 Jun;2(2):53-56 [PMID: 38620322]
  26. Expert Rev Mol Diagn. 2020 May;20(5):453-454 [PMID: 32297805]
  27. Int J Infect Dis. 2022 Jul;120:150-157 [PMID: 35427785]
  28. J Infect Dis. 2021 Dec 15;224(12):2001-2009 [PMID: 34612499]
  29. Lancet Infect Dis. 2021 Sep;21(9):1233-1245 [PMID: 33857405]
  30. EClinicalMedicine. 2021 Aug 28;40:101101 [PMID: 34476394]
  31. Eur Respir J. 2020 Aug 27;56(2): [PMID: 32430429]
  32. N Engl J Med. 2020 Mar 19;382(12):1177-1179 [PMID: 32074444]
  33. Cochrane Database Syst Rev. 2020 Aug 26;8:CD013705 [PMID: 32845525]
  34. Mymensingh Med J. 2020 Jul;29(3):596-600 [PMID: 32844799]
  35. Diagnostics (Basel). 2021 Dec 08;11(12): [PMID: 34943537]
  36. Microbiol Spectr. 2021 Dec 22;9(3):e0046821 [PMID: 34730436]
  37. J Clin Microbiol. 2020 May 26;58(6): [PMID: 32229605]
  38. Lancet Glob Health. 2020 Dec;8(12):e1457-e1458 [PMID: 33091372]
  39. Int J Nanomedicine. 2021 Jul 09;16:4739-4753 [PMID: 34267520]
  40. Vaccines (Basel). 2022 Jan 30;10(2): [PMID: 35214678]
  41. J Virol Methods. 2022 Feb;300:114409 [PMID: 34896454]
  42. Int J Infect Dis. 2021 Nov;112:281-287 [PMID: 34536612]
  43. Int J Infect Dis. 2021 Mar;104:282-286 [PMID: 33130198]
  44. Talanta. 2022 Nov 1;249:123375 [PMID: 35738204]
  45. Afr J Lab Med. 2021 Mar 30;10(1):1326 [PMID: 33937003]
  46. J Med Virol. 2021 Apr;93(4):2196-2203 [PMID: 33107601]
  47. mSphere. 2020 Jul 29;5(4): [PMID: 32727861]
  48. Lancet Respir Med. 2022 Nov;10(11):1074-1085 [PMID: 36228640]
  49. J Clin Microbiol. 2021 Apr 20;59(5): [PMID: 33504593]
  50. BMJ Open. 2021 Oct 18;11(10):e050296 [PMID: 34663660]

MeSH Term

Humans
Clinical Laboratory Techniques
COVID-19
COVID-19 Testing
Molecular Diagnostic Techniques
Nucleic Acid Amplification Techniques
RNA, Viral
SARS-CoV-2
Sensitivity and Specificity

Chemicals

RNA, Viral

Word Cloud

Created with Highcharts 10.0.0COVID-19SARS-CoV-2toolsLICsdetectiondiagnostictestseffectivenesstestinglaboratorycoronavirus2proceduresmanagingdiseaseperformancereverseRT-PCRamplificationRT-LAMPRDTstestaccuracysevereacuterespiratorysyndromecanimpactdownstreamclinicalcontrollingoutbreak2019assesspatientslow-incomecountriessystematicallysearchedPubMedEmbaseScopusCINHALdatabasesreportspublishedJanuary2020June2022found221303articlesreportedvariousacross101real-timetranscriptasepolymerasechainreactiontranscriptionloop-mediatedisothermal3rapid4enzyme-linkedimmunosorbentassayELISA5dot-blotimmunoassaylargelydividedtwomainstreams-directvirusantigenserologyimmunoglobulin-basedPoint-of-careusingantigen-basedpreferredcostsimplicitynucleicacidtechnologyhighestamongavailablebroadlyusedcontextduecostsshortagefacilities/trainedstaffserology-basedmethodaffectedantibodyinterferencesvaryingamountsimmunoglobulinsexpresseddifferentstagesonsetdiscussshortcomingsdiagnosismanagementUsingstudymodelfindingshighlightwaysimprovequalityturnaroundtimeresource-constrainedsettingsnotablylocal/internationalcollaborativeeffortsrefinemolecular-basedimmunoassay-basedtechnologiesTestingStrategiesDiagnosisManagementPatientsLow-IncomeCountries:ScopingReview

Similar Articles

Cited By