Evolutionary dissection of monkeypox virus: Positive Darwinian selection drives the adaptation of virus-host interaction proteins.

Xiao-Yong Zhan, Gao-Feng Zha, Yulong He
Author Information
  1. Xiao-Yong Zhan: The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
  2. Gao-Feng Zha: The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
  3. Yulong He: The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.

Abstract

The emerging and ongoing outbreak of human monkeypox (hMPX) in 2022 is a serious global threat. An understanding of the evolution of the monkeypox virus (MPXV) at the single-gene level may provide clues for exploring the unique aspects of the current outbreak: rapidly expanding and sustained human-to-human transmission. For the current investigation, alleles of 156 MPXV coding genes (which account for >95% of the genomic sequence) have been gathered from roughly 1,500 isolates, including those responsible for the previous outbreaks. Using a range of molecular evolution approaches, we demonstrated that intra-species homologous recombination has a negligible effect on MPXV evolution. Despite the fact that the majority of the MPXV genes (64.10%) were subjected to negative selection at the whole gene level, 10 MPXV coding genes (MPXVgp004, 010, 012, 014, 044, 098, 138, 178, 188, and 191) were found to have a total of 15 codons or amino acid sites that are known to evolve under positive Darwinian selection. Except for MPXVgp138, almost all of these genes encode proteins that interact with the host. Of these, five ankyrin proteins (MPXVgp004, 010, 012, 178, and 188) and one Bcl-2-like protein (MPXVgp014) are involved in poxviruses' host range determination. We discovered that the majority (80%) of positive amino acid substitutions emerged several decades ago, indicating that these sites have been under constant selection pressure and that more adaptable alleles have been circulating in the natural reservoir. This finding was also supported by the minimum spanning networks of the gene alleles. The three positive amino acid substitutions (T/A426V in MPXVgp010, A423D in MPXVgp012, and S105L in MPXVgp191) appeared in 2019 or 2022, indicating that they would be crucial for the virus' eventual adaptation to humans. Protein modeling suggests that positive amino acid substitutions may affect protein functions in a variety of ways. Further study should focus on revealing the biological effects of positive amino acid substitutions in the genes for viral adaptation to humans, virulence, transmission, and so on. Our study advances knowledge of MPXV's adaptive mechanism and provides insights for exploring factors that are responsible for the unique aspects of the current outbreak.

Keywords

References

  1. J Infect Dis. 2017 Dec 19;216(12):1505-1512 [PMID: 29029254]
  2. Infect Genet Evol. 2015 Mar;30:296-307 [PMID: 25541518]
  3. J Autoimmun. 2022 Dec;133:102928 [PMID: 36252459]
  4. Nat Ecol Evol. 2018 Aug;2(8):1280-1288 [PMID: 29967485]
  5. Protein Eng. 2000 Mar;13(3):179-91 [PMID: 10775659]
  6. Syst Biol. 2004 Oct;53(5):793-808 [PMID: 15545256]
  7. AIDS Res Hum Retroviruses. 2005 Jan;21(1):98-102 [PMID: 15665649]
  8. Brief Bioinform. 2015 May;16(3):536-48 [PMID: 24872401]
  9. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  10. Mol Biol Evol. 2017 Dec 1;34(12):3299-3302 [PMID: 29029172]
  11. Infect Genet Evol. 2018 Apr;59:16-22 [PMID: 29413881]
  12. Mol Biol Evol. 1999 Jan;16(1):37-48 [PMID: 10331250]
  13. Mol Biol Evol. 1992 Jul;9(4):678-87 [PMID: 1630306]
  14. J Mol Evol. 1985;22(2):160-74 [PMID: 3934395]
  15. Nat Protoc. 2015 Jun;10(6):845-58 [PMID: 25950237]
  16. PeerJ. 2022 Aug 31;10:e13843 [PMID: 36065404]
  17. Bioinformatics. 2000 Jun;16(6):562-3 [PMID: 10980155]
  18. Curr Protoc Bioinformatics. 2016 Jun 20;54:6.15.1-6.15.32 [PMID: 27322407]
  19. Genetics. 2007 Jul;176(3):1759-98 [PMID: 17483432]
  20. Emerg Infect Dis. 2020 Aug;26(8):1826-1830 [PMID: 32338590]
  21. J Med Virol. 2023 Jan;95(1):e28036 [PMID: 35906185]
  22. Sustain Cities Soc. 2022 Jun;81:103840 [PMID: 35317188]
  23. Viruses. 2010 Apr;2(4):972-986 [PMID: 21994664]
  24. Elife. 2018 Aug 29;7: [PMID: 30156554]
  25. Future Microbiol. 2007 Feb;2(1):17-34 [PMID: 17661673]
  26. J Virol. 2013 Jan;87(2):900-11 [PMID: 23135728]
  27. Mol Biol Evol. 2006 Feb;23(2):254-67 [PMID: 16221896]
  28. Nat Rev Immunol. 2022 Oct;22(10):597-613 [PMID: 36064780]
  29. Virus Evol. 2015 May 26;1(1):vev003 [PMID: 27774277]
  30. Biol Direct. 2017 Jan 17;12(1):1 [PMID: 28095902]
  31. Travel Med Infect Dis. 2022 Sep-Oct;49:102402 [PMID: 35840078]
  32. J Virol. 1988 Apr;62(4):1297-304 [PMID: 2831390]
  33. Ecol Evol. 2019 Mar 01;9(7):3891-3898 [PMID: 31015974]
  34. Infect Genet Evol. 2014 Jan;21:15-40 [PMID: 24161410]
  35. Emerg Infect Dis. 2014 Jun;20(6):1009-11 [PMID: 24857667]
  36. PLoS Negl Trop Dis. 2022 Feb 11;16(2):e0010141 [PMID: 35148313]
  37. Mol Ecol. 2015 Jun;24(12):3077-92 [PMID: 25907026]
  38. Vaccine. 2020 Jul 14;38(33):5077-5081 [PMID: 32417140]
  39. PLoS Pathog. 2015 Mar 11;11(3):e1004723 [PMID: 25760349]
  40. Bull World Health Organ. 1972;46(5):593-7 [PMID: 4340218]
  41. Virology. 2002 Jun 5;297(2):172-94 [PMID: 12083817]
  42. Science. 2006 Aug 11;313(5788):807-12 [PMID: 16873609]
  43. PLoS Negl Trop Dis. 2017 Aug 21;11(8):e0005809 [PMID: 28827792]
  44. Science. 2022 Nov 4;378(6619):560-565 [PMID: 36264825]
  45. Mol Biol Evol. 2013 May;30(5):1196-205 [PMID: 23420840]
  46. EMBO J. 2007 Nov 28;26(23):4913-25 [PMID: 17989694]
  47. Cytokine Growth Factor Rev. 2022 Dec;68:1-12 [PMID: 36244878]
  48. Trends Genet. 2006 Apr;22(4):225-31 [PMID: 16490279]
  49. Viruses. 2015 Feb 16;7(2):709-38 [PMID: 25690795]
  50. Semin Cell Dev Biol. 2016 Dec;60:89-96 [PMID: 27423915]
  51. Genetics. 2000 May;155(1):431-49 [PMID: 10790415]
  52. Nat Struct Mol Biol. 2021 Oct;28(10):779-788 [PMID: 34556871]
  53. J Biol Chem. 2006 Feb 24;281(8):5258-66 [PMID: 16332678]
  54. Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):19009-19018 [PMID: 31484772]
  55. Virus Res. 2021 Sep;302:198472 [PMID: 34118359]
  56. Nat Med. 2022 Aug;28(8):1569-1572 [PMID: 35750157]
  57. Pathogens. 2020 Dec 23;10(1): [PMID: 33374867]
  58. J Infect Public Health. 2022 Oct 12;15(11):1270-1275 [PMID: 36272392]
  59. J Virol. 2010 Apr;84(7):3331-8 [PMID: 20089642]
  60. Front Microbiol. 2022 Mar 30;13:883436 [PMID: 35432275]
  61. J Virol. 1992 Aug;66(8):4720-31 [PMID: 1629952]
  62. Arch Virol. 2005 Sep;150(9):1857-70 [PMID: 15824883]
  63. PLoS Genet. 2008 Dec;4(12):e1000304 [PMID: 19081788]
  64. Immunol Rev. 2008 Oct;225:96-113 [PMID: 18837778]
  65. Mol Biol Evol. 2002 May;19(5):708-17 [PMID: 11961104]
  66. Virology. 1990 Nov;179(1):276-86 [PMID: 2171207]
  67. Int J Mol Sci. 2022 Jul 17;23(14): [PMID: 35887214]
  68. Trop Med Int Health. 2022 Jul;27(7):604-605 [PMID: 35633308]
  69. Bioinformatics. 2000 Jul;16(7):573-82 [PMID: 11038328]
  70. Front Microbiol. 2020 Oct 23;11:550674 [PMID: 33193132]
  71. Geroscience. 2022 Dec;44(6):2895-2911 [PMID: 36094771]
  72. J Mol Evol. 1992 Feb;34(2):126-9 [PMID: 1556748]
  73. Virol J. 2010 Mar 15;7:59 [PMID: 20230632]

MeSH Term

Humans
Monkeypox virus
Host Microbial Interactions
Mpox (monkeypox)
Host Specificity

Word Cloud

Created with Highcharts 10.0.0positiveMPXVgenesselectionaminoacidmonkeypoxproteinssubstitutionsadaptationevolutioncurrentallelesrangeDarwinianhostoutbreak2022viruslevelmayexploringuniqueaspectstransmissioncodingresponsiblemajoritygeneMPXVgp004010012178188sitesankyrinproteinindicatinghumansstudyinteractionemergingongoinghumanhMPXseriousglobalthreatunderstandingsingle-geneprovidecluesoutbreak:rapidlyexpandingsustainedhuman-to-humaninvestigation156account>95%genomicsequencegatheredroughly1500isolatesincludingpreviousoutbreaksUsingmolecularapproachesdemonstratedintra-specieshomologousrecombinationnegligibleeffectDespitefact6410%subjectednegativewhole10014044098138191foundtotal15codonsknownevolveExceptMPXVgp138almostencodeinteractfiveoneBcl-2-likeMPXVgp014involvedpoxviruses'determinationdiscovered80%emergedseveraldecadesagoconstantpressureadaptablecirculatingnaturalreservoirfindingalsosupportedminimumspanningnetworksthreeT/A426VMPXVgp010A423DMPXVgp012S105LMPXVgp191appeared2019crucialvirus'eventualProteinmodelingsuggestsaffectfunctionsvarietywaysfocusrevealingbiologicaleffectsviralvirulenceadvancesknowledgeMPXV'sadaptivemechanismprovidesinsightsfactorsEvolutionarydissectionvirus:Positivedrivesvirus-hostvirus–host

Similar Articles

Cited By (9)