Demonstration of engineered tandem duplications of varying sizes using CRISPR and recombinases in .

David W Loehlin, Georgia L McClain, Manting Xu, Ria Kedia, Elise Root
Author Information
  1. David W Loehlin: Biology Department, Williams College, Williamstown, MA 01267.
  2. Georgia L McClain: Biology Department, Williams College, Williamstown, MA 01267.
  3. Manting Xu: Biology Department, Williams College, Williamstown, MA 01267.
  4. Ria Kedia: Biology Department, Williams College, Williamstown, MA 01267.
  5. Elise Root: Biology Department, Williams College, Williamstown, MA 01267.

Abstract

Tandem gene duplicates are important parts of eukaryotic genome structure, yet the phenotypic effects of new tandem duplications are not well-understood, in part owing to a lack of techniques to build and modify them. We introduce a method, Recombinase-Mediated Tandem Duplication (RMTD), to engineer specific tandem duplications using CRISPR and recombinases. We describe construction of four different tandem duplications of the ( ) gene in , with duplicated block sizes ranging from 4.2 kb to 20.7 kb. Flies with the duplications show elevated Adh enzyme activity over unduplicated single copies. This approach to engineering duplications is combinatoric, opening the door to systematic study of the relationship between the structure of tandem duplications and their effects on expression.

References

  1. Curr Biol. 1993 Jul 1;3(7):424-33 [PMID: 15335709]
  2. Nat Rev Genet. 2016 Apr;17(4):224-38 [PMID: 26924765]
  3. Genetics. 2022 Mar 3;220(3): [PMID: 35100388]
  4. Genetics. 1999 Sep;153(1):179-219 [PMID: 10471707]
  5. Elife. 2019 Nov 01;8: [PMID: 31674908]
  6. Nucleic Acids Res. 2008 Feb;36(3):929-37 [PMID: 18086699]
  7. ACS Synth Biol. 2015 Sep 18;4(9):975-86 [PMID: 25871405]
  8. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5988-92 [PMID: 27162370]
  9. Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12383-12389 [PMID: 31152141]
  10. Science. 2016 May 20;352(6288):1009-13 [PMID: 27199432]
  11. FASEB J. 2011 Dec;25(12):4088-107 [PMID: 21891781]
  12. G3 (Bethesda). 2022 May 6;12(5): [PMID: 35266526]
  13. Cold Spring Harb Symp Quant Biol. 1985;50:515-20 [PMID: 3007005]
  14. Genome Res. 2016 Jun;26(6):787-98 [PMID: 27197209]
  15. Nat Commun. 2019 Oct 25;10(1):4872 [PMID: 31653862]
  16. PLoS One. 2017 Mar 16;12(3):e0173991 [PMID: 28301587]
  17. Cell. 1989 Nov 3;59(3):499-509 [PMID: 2509077]
  18. Genetics. 2018 Jan;208(1):1-18 [PMID: 29301946]
  19. Nat Commun. 2016 Jul 28;7:12338 [PMID: 27465542]
  20. Genetics. 1994 Jun;137(2):551-63 [PMID: 8070665]
  21. Plant Cell. 2022 Jul 4;34(7):2466-2474 [PMID: 35253876]
  22. Nature. 2022 May;605(7911):754-760 [PMID: 35508662]
  23. Genetics. 2014 Apr;196(4):961-71 [PMID: 24478335]
  24. Genes Dev. 1989 Dec;3(12B):2191-20 [PMID: 2516829]
  25. Genetics. 1992 Jul;131(3):643-53 [PMID: 1628809]
  26. Genes Dev. 1992 Mar;6(3):454-65 [PMID: 1547943]
  27. Genetics. 1991 Oct;129(2):489-99 [PMID: 1683848]
  28. Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7386-7391 [PMID: 29941601]
  29. Genetics. 2020 Jan;214(1):75-89 [PMID: 31685521]
  30. Trends Genet. 2022 May;38(5):437-453 [PMID: 34933779]
  31. PLoS Genet. 2017 May 22;13(5):e1006795 [PMID: 28531189]
  32. Genetics. 2008 Nov;180(3):1763-6 [PMID: 18791223]

Grants

  1. R15 GM140429/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0duplicationstandemTandemgenestructureeffectsusingCRISPRrecombinasessizeskbduplicatesimportantpartseukaryoticgenomeyetphenotypicnewwell-understoodpartowinglacktechniquesbuildmodifyintroducemethodRecombinase-MediatedDuplicationRMTDengineerspecificdescribeconstructionfourdifferentduplicatedblockranging42207FliesshowelevatedADHenzymeactivityunduplicatedsinglecopiesapproachengineeringcombinatoricopeningdoorsystematicstudyrelationshipexpressionDemonstrationengineeredvarying

Similar Articles

Cited By

No available data.