Immune sensing of food allergens promotes aversive behaviour.

Esther B Florsheim, Nathaniel D Bachtel, Jaime Cullen, Bruna G C Lima, Mahdieh Godazgar, Cuiling Zhang, Fernando Carvalho, Gregory Gautier, Pierre Launay, Andrew Wang, Marcelo O Dietrich, Ruslan Medzhitov
Author Information
  1. Esther B Florsheim: Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
  2. Nathaniel D Bachtel: Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
  3. Jaime Cullen: Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
  4. Bruna G C Lima: Department of Pharmacology, University of São Paulo, São Paulo, SP 05508-000 SP, Brazil.
  5. Mahdieh Godazgar: Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA.
  6. Cuiling Zhang: Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
  7. Fernando Carvalho: Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
  8. Gregory Gautier: INSERM UMRS 1149; CNRS ERL 8252; University Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris 75018, France.
  9. Pierre Launay: INSERM UMRS 1149; CNRS ERL 8252; University Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris 75018, France.
  10. Andrew Wang: Department of Internal Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
  11. Marcelo O Dietrich: Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA.
  12. Ruslan Medzhitov: Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

Abstract

In addition to its canonical function in protecting from pathogens, the immune system can also promote behavioural alterations . The scope and mechanisms of behavioural modifications by the immune system are not yet well understood. Using a mouse food allergy model, here we show that allergic sensitization drives antigen-specific behavioural aversion. Allergen ingestion activates brain areas involved in the response to aversive stimuli, including the nucleus of tractus solitarius, parabrachial nucleus, and central amygdala. Food aversion requires IgE antibodies and mast cells but precedes the development of gut allergic inflammation. The ability of allergen-specific IgE and mast cells to promote aversion requires leukotrienes and growth and differentiation factor 15 (GDF15). In addition to allergen-induced aversion, we find that lipopolysaccharide-induced inflammation also resulted in IgE-dependent aversive behaviour. These findings thus point to antigen-specific behavioural modifications that likely evolved to promote niche selection to avoid unfavourable environments.

References

  1. Handb Exp Pharmacol. 2014;223:827-71 [PMID: 24961971]
  2. J Exp Med. 1995 Jul 1;182(1):197-206 [PMID: 7540649]
  3. Nat Rev Immunol. 2014 Jul;14(7):478-94 [PMID: 24903914]
  4. Annu Rev Immunol. 2016 May 20;34:421-47 [PMID: 26907213]
  5. Am J Physiol Gastrointest Liver Physiol. 2013 May 15;304(10):G908-16 [PMID: 23471341]
  6. Perspect Biol Med. 1974 Winter;17(2):233-9 [PMID: 4273175]
  7. J Immunol. 1988 Oct 1;141(7):2335-41 [PMID: 2459206]
  8. Neuron. 2021 Feb 3;109(3):461-472.e5 [PMID: 33278342]
  9. Neuroscience. 2011 Feb 23;175:133-44 [PMID: 21146592]
  10. Mol Pharmacol. 2008 Feb;73(2):274-81 [PMID: 18000030]
  11. Nature. 2021 Feb;590(7844):151-156 [PMID: 33442055]
  12. Q Rev Biol. 1991 Mar;66(1):23-62 [PMID: 2052671]
  13. Ann N Y Acad Sci. 1987;496:561-8 [PMID: 3474989]
  14. Nature. 2018 Mar 29;555(7698):617-622 [PMID: 29562230]
  15. Braz J Med Biol Res. 1994 Jun;27(6):1331-41 [PMID: 7534545]
  16. Br J Pharmacol. 1968 Nov;34(3):508-13 [PMID: 4387255]
  17. Brain Behav Immun. 2010 Mar;24(3):370-5 [PMID: 20035860]
  18. NCHS Data Brief. 2013 May;(121):1-8 [PMID: 23742874]
  19. Nature. 2020 Jun;582(7811):265-270 [PMID: 32499653]
  20. Cell Metab. 2019 Mar 5;29(3):707-718.e8 [PMID: 30639358]
  21. J Neuroimmunol. 1998 Jun 15;86(2):163-70 [PMID: 9663562]
  22. Chem Senses. 2006 Mar;31(3):253-64 [PMID: 16436689]
  23. Cell. 2019 Aug 22;178(5):1231-1244.e11 [PMID: 31402172]
  24. J Clin Invest. 2014 Oct;124(10):4577-89 [PMID: 25180604]
  25. Neuroimmunomodulation. 2001;9(2):88-94 [PMID: 11549890]
  26. Science. 2021 Mar 19;371(6535): [PMID: 33737460]
  27. Cell Rep. 2019 Mar 26;26(13):3561-3573.e4 [PMID: 30917312]
  28. J Exp Med. 2001 Jan 1;193(1):123-33 [PMID: 11136826]
  29. Cell. 2018 Apr 19;173(3):554-567 [PMID: 29677509]
  30. J Allergy Clin Immunol. 2006 May;117(5):969-77; quiz 978 [PMID: 16675321]
  31. J Clin Invest. 2003 Dec;112(11):1666-77 [PMID: 14660743]
  32. Cell. 2016 May 5;165(4):801-11 [PMID: 27153494]
  33. J Exp Med. 2002 Jun 3;195(11):1387-95 [PMID: 12045237]
  34. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  35. Elife. 2020 Jul 29;9: [PMID: 32723474]
  36. Cell. 2018 Mar 22;173(1):140-152.e15 [PMID: 29570993]
  37. Neuropharmacology. 2008 Nov;55(6):1072-80 [PMID: 18687345]
  38. Cell. 2021 Jan 21;184(2):422-440.e17 [PMID: 33450207]
  39. Clin Exp Immunol. 2010 Apr;160(1):1-9 [PMID: 20415844]
  40. BMJ. 1989 Nov 18;299(6710):1259-60 [PMID: 2513902]
  41. Cell. 2021 Nov 24;184(24):5902-5915.e17 [PMID: 34752731]
  42. Curr Opin Immunol. 2015 Oct;36:109-14 [PMID: 26296054]
  43. J Physiol. 2003 Mar 1;547(Pt 2):531-42 [PMID: 12562962]
  44. Immunity. 2013 Nov 14;39(5):976-85 [PMID: 24210353]
  45. Cell. 2021 Mar 18;184(6):1440-1454 [PMID: 33450204]
  46. Science. 2014 Jan 24;343(6169):432-7 [PMID: 24458645]
  47. Gastroenterology. 2007 Jan;132(1):26-37 [PMID: 17241857]
  48. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10838-43 [PMID: 9380721]
  49. J Neurosci. 2007 Feb 28;27(9):2331-7 [PMID: 17329430]
  50. Nat Med. 2012 May 04;18(5):693-704 [PMID: 22561833]
  51. J Allergy Clin Immunol. 2014 Jun;133(6):1521-34 [PMID: 24433703]
  52. Immunity. 2019 Oct 15;51(4):709-723.e6 [PMID: 31604686]
  53. J Immunol. 2015 May 15;194(10):4621-30 [PMID: 25876764]
  54. PLoS One. 2014 Jun 27;9(6):e100370 [PMID: 24971956]
  55. Cell. 2017 Jun 29;170(1):185-198.e16 [PMID: 28648659]
  56. Cell. 1990 Aug 10;62(3):457-67 [PMID: 2116236]
  57. J Immunol. 1982 Oct;129(4):1627-31 [PMID: 6809826]
  58. Nature. 1998 Mar 26;392(6674):390-4 [PMID: 9537322]
  59. Nature. 1994 Aug 4;370(6488):367-70 [PMID: 8047141]
  60. Immunity. 2019 Oct 15;51(4):696-708.e9 [PMID: 31618654]
  61. Proc Natl Acad Sci U S A. 2021 Mar 30;118(13): [PMID: 33753496]
  62. Immunity. 2013 Nov 14;39(5):963-75 [PMID: 24210352]
  63. Physiol Behav. 2016 Oct 1;164(Pt B):473-477 [PMID: 27126968]
  64. Immunity. 2017 Jul 18;47(1):32-50 [PMID: 28723552]
  65. Cell. 2020 Apr 30;181(3):574-589.e14 [PMID: 32259485]
  66. J Exp Med. 2014 Jul 28;211(8):1657-72 [PMID: 25071163]
  67. Allergy. 2005 Apr;60(4):443-51 [PMID: 15727574]
  68. Nat Rev Immunol. 2009 Jun;9(6):418-28 [PMID: 19461672]
  69. Insects. 2012 Aug 15;3(3):789-820 [PMID: 26466629]
  70. Immunity. 2022 Jun 14;55(6):1082-1095.e5 [PMID: 35588739]

Grants

  1. F30 AI174787/NIAID NIH HHS
  2. R01 AI144152/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0behaviouralaversionpromoteaversiveadditionimmunesystemalsomodificationsfoodallergicantigen-specificnucleusrequiresIgEmastcellsinflammationbehaviourcanonicalfunctionprotectingpathogenscanalterationsscopemechanismsyetwellunderstoodUsingmouseallergymodelshowsensitizationdrivesAllergeningestionactivatesbrainareasinvolvedresponsestimuliincludingtractussolitariusparabrachialcentralamygdalaFoodantibodiesprecedesdevelopmentgutabilityallergen-specificleukotrienesgrowthdifferentiationfactor15GDF15allergen-inducedfindlipopolysaccharide-inducedresultedIgE-dependentfindingsthuspointlikelyevolvednicheselectionavoidunfavourableenvironmentsImmunesensingallergenspromotes

Similar Articles

Cited By

No available data.