Thermal Stability of the Ferroelectric Properties in 100 nm-Thick AlScN.

Roberto Guido, Patrick D Lomenzo, Md Redwanul Islam, Niklas Wolff, Maike Gremmel, Georg Schönweger, Hermann Kohlstedt, Lorenz Kienle, Thomas Mikolajick, Simon Fichtner, Uwe Schroeder
Author Information
  1. Roberto Guido: Namlab gGmbH, Nöthnitzer Strasse 64a, 01187Dresden, Germany. ORCID
  2. Patrick D Lomenzo: Namlab gGmbH, Nöthnitzer Strasse 64a, 01187Dresden, Germany. ORCID
  3. Md Redwanul Islam: Technical Faculty, Kiel University, Kaiserstraße 2, 24143Kiel, Germany.
  4. Niklas Wolff: Technical Faculty, Kiel University, Kaiserstraße 2, 24143Kiel, Germany.
  5. Maike Gremmel: Technical Faculty, Kiel University, Kaiserstraße 2, 24143Kiel, Germany.
  6. Georg Schönweger: Technical Faculty, Kiel University, Kaiserstraße 2, 24143Kiel, Germany.
  7. Hermann Kohlstedt: Technical Faculty, Kiel University, Kaiserstraße 2, 24143Kiel, Germany.
  8. Lorenz Kienle: Technical Faculty, Kiel University, Kaiserstraße 2, 24143Kiel, Germany.
  9. Thomas Mikolajick: Namlab gGmbH, Nöthnitzer Strasse 64a, 01187Dresden, Germany. ORCID
  10. Simon Fichtner: Technical Faculty, Kiel University, Kaiserstraße 2, 24143Kiel, Germany. ORCID
  11. Uwe Schroeder: Namlab gGmbH, Nöthnitzer Strasse 64a, 01187Dresden, Germany. ORCID

Abstract

The discovery of ferroelectricity in aluminum scandium nitride (AlScN) opens technological perspectives for harsh environments and space-related memory applications, considering the high-temperature stability of piezoelectricity in aluminum nitride. The ferroelectric and material properties of 100 nm-thick AlScN are studied up to 873 K, combining both electrical and in situ X-ray diffraction measurements as well as transmission electron microscopy and energy-dispersive X-ray spectroscopy. The present work demonstrates that AlScN can achieve high switching polarization and tunable coercive fields in a 375 K temperature range from room temperature up to 673 K. The degradation of the ferroelectric properties in the capacitors is observed above this temperature. Reduction of the effective top electrode area and consequent oxidation of the AlScN film are mainly responsible for this degradation. A slight variation of the Sc concentration is quantified across grain boundaries, even though its impact on the ferroelectric properties cannot be isolated from those brought by the top electrode deterioration and AlScN oxidation. The Curie temperature of AlScN is confirmed to be above 873 K, thus corroborating the promising thermal stability of this ferroelectric material. The present results further support the future adoption of AlScN in memory technologies for harsh environments like applications in space missions.

Keywords

Word Cloud

Created with Highcharts 10.0.0AlScNferroelectricKtemperaturealuminumnitrideharshenvironmentsapplicationsstabilitypropertiesscandiummemorymaterial100873X-raypresentdegradationtopelectrodeoxidationthermalspacediscoveryferroelectricityopenstechnologicalperspectivesspace-relatedconsideringhigh-temperaturepiezoelectricitynm-thickstudiedcombiningelectricalsitudiffractionmeasurementswelltransmissionelectronmicroscopyenergy-dispersivespectroscopyworkdemonstratescanachievehighswitchingpolarizationtunablecoercivefields375rangeroom673capacitorsobservedReductioneffectiveareaconsequentfilmmainlyresponsibleslightvariationScconcentrationquantifiedacrossgrainboundarieseventhoughimpactisolatedbroughtdeteriorationCurieconfirmedthuscorroboratingpromisingresultssupportfutureadoptiontechnologieslikemissionsThermalStabilityFerroelectricPropertiesnm-Thickferroelectricswurtzite

Similar Articles

Cited By