Minor Genetic Consequences of a Major Mass Mortality: Short-Term Effects in .

Lauren M Schiebelhut, Melina Giakoumis, Rita Castilho, Paige J Duffin, Jonathan B Puritz, John P Wares, Gary M Wessel, Michael N Dawson
Author Information

Abstract

AbstractMass mortality events are increasing globally in frequency and magnitude, largely as a result of human-induced change. The effects of these mass mortality events, in both the long and short term, are of imminent concern because of their ecosystem impacts. Genomic data can be used to reveal some of the population-level changes associated with mass mortality events. Here, we use reduced-representation sequencing to identify potential short-term genetic impacts of a mass mortality event associated with a sea star wasting outbreak. We tested for changes in the population for genetic differentiation, diversity, and effective population size between pre-sea star wasting and post-sea star wasting populations of -a species that suffered high sea star wasting-associated mortality (75%-100% at 80% of sites). We detected no significant population-based genetic differentiation over the spatial scale sampled; however, the post-sea star wasting population tended toward more differentiation across sites than the pre-sea star wasting population. Genetic estimates of effective population size did not detectably change, consistent with theoretical expectations; however, rare alleles were lost. While we were unable to detect significant population-based genetic differentiation or changes in effective population size over this short time period, the genetic burden of this mass mortality event may be borne by future generations, unless widespread recruitment mitigates the population decline. Prior results from indicated that natural selection played a role in altering allele frequencies following this mass mortality event. In addition to the role of selection found in a previous study on the genomic impacts of sea star wasting on , our current study highlights the potential role the stochastic loss of many individuals plays in altering how genetic variation is structured across the landscape. Future genetic monitoring is needed to determine long-term genetic impacts in this long-lived species. Given the increased frequency of mass mortality events, it is important to implement demographic and genetic monitoring strategies that capture baselines and background dynamics to better contextualize species' responses to large perturbations.

References

  1. Commun Biol. 2021 Mar 5;4(1):298 [PMID: 33674760]
  2. Mol Biol Evol. 2017 Dec 1;34(12):3299-3302 [PMID: 29029172]
  3. PLoS Genet. 2009 Oct;5(10):e1000695 [PMID: 19851460]
  4. Mol Ecol. 2007 Jan;16(1):127-38 [PMID: 17181726]
  5. Bioinformatics. 2011 Nov 1;27(21):3070-1 [PMID: 21926124]
  6. Mol Ecol. 2016 Oct;25(19):4689-91 [PMID: 27671356]
  7. PLoS One. 2011;6(9):e23822 [PMID: 21931617]
  8. Curr Biol. 2020 Apr 6;30(7):1199-1206.e2 [PMID: 32109397]
  9. Heredity (Edinb). 2018 Mar;120(3):196-207 [PMID: 29269932]
  10. Proc Biol Sci. 2012 Oct 7;279(1744):3914-22 [PMID: 22810427]
  11. Science. 2022 Apr 29;376(6592):524-526 [PMID: 35482875]
  12. G3 (Bethesda). 2011 Aug;1(3):171-82 [PMID: 22384329]
  13. PLoS One. 2016 May 04;11(5):e0153994 [PMID: 27144391]
  14. PLoS One. 2016 Mar 16;11(3):e0150590 [PMID: 26982334]
  15. PLoS One. 2019 Nov 21;14(11):e0225248 [PMID: 31751376]
  16. Proc Biol Sci. 2020 Oct 14;287(1936):20201432 [PMID: 33049171]
  17. Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):7069-7074 [PMID: 29915091]
  18. Sci Rep. 2016 Oct 26;6:36095 [PMID: 27782185]
  19. Conserv Biol. 2011 Jun;25(3):438-49 [PMID: 21284731]
  20. Genetics. 2002 Nov;162(3):1329-39 [PMID: 12454077]
  21. Mol Ecol Resour. 2018 Jun 1;: [PMID: 29856123]
  22. Geophys Res Lett. 2016 Oct 16;43(19):10366-10376 [PMID: 27917011]
  23. Proc Biol Sci. 2001 Jul 7;268(1474):1387-94 [PMID: 11429139]
  24. PLoS One. 2012;7(5):e37135 [PMID: 22675423]
  25. Mol Ecol. 2010 Nov;19(22):5043-60 [PMID: 21040048]
  26. Ecol Evol. 2021 Mar 04;11(7):3313-3331 [PMID: 33841786]
  27. Genetics. 2004 Jan;166(1):351-72 [PMID: 15020430]
  28. Biol Bull. 2006 Dec;211(3):248-62 [PMID: 17179384]
  29. Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17278-83 [PMID: 25404293]
  30. Mol Ecol. 2006 Jul;15(8):2031-45 [PMID: 16780422]
  31. Biol Conserv. 2010 Mar;143(3):537-544 [PMID: 32226082]
  32. Science. 2017 Aug 04;357(6350):495-498 [PMID: 28774927]
  33. PLoS One. 2016 Mar 04;11(3):e0151076 [PMID: 26943816]
  34. Evolution. 2009 Dec;63(12):3214-27 [PMID: 19663996]
  35. Mol Ecol. 2020 Mar;29(6):1087-1102 [PMID: 32069379]
  36. Mol Ecol. 2008 Aug;17(15):3428-47 [PMID: 19160474]
  37. Ecol Evol. 2020 Feb 11;10(4):1929-1937 [PMID: 32128126]
  38. Nat Commun. 2011;2:226 [PMID: 21407192]
  39. PeerJ. 2014 Jun 10;2:e431 [PMID: 24949246]
  40. Mol Ecol. 2020 Jan;29(2):218-246 [PMID: 31758601]
  41. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  42. Mol Ecol Resour. 2014 Jan;14(1):209-14 [PMID: 23992227]
  43. Genetics. 2014 Apr;196(4):973-83 [PMID: 24496008]
  44. Mol Ecol. 2005 Oct;14(11):3335-52 [PMID: 16156807]
  45. Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):1083-8 [PMID: 25583498]
  46. Philos Trans R Soc Lond B Biol Sci. 2016 Mar 5;371(1689): [PMID: 26880844]
  47. Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18848-53 [PMID: 19033205]
  48. Nat Commun. 2018 Apr 10;9(1):1324 [PMID: 29636482]
  49. Mol Ecol. 2021 Oct;30(20):4991-5008 [PMID: 34379852]
  50. Evolution. 1984 Nov;38(6):1358-1370 [PMID: 28563791]
  51. Nat Ecol Evol. 2021 May;5(5):574-582 [PMID: 33649544]
  52. PLoS One. 2018 Mar 20;13(3):e0192870 [PMID: 29558484]
  53. Ecol Evol. 2018 Aug 25;8(18):9362-9371 [PMID: 30377507]
  54. Sci Rep. 2019 Oct 21;9(1):15050 [PMID: 31636286]
  55. Mol Ecol. 2015 Sep;24(17):4419-32 [PMID: 26222582]
  56. Ecol Appl. 2015 Sep;25(6):1534-45 [PMID: 26552262]
  57. Mol Ecol Resour. 2009 Jan;9(1):66-73 [PMID: 21564568]
  58. Heredity (Edinb). 2011 Jan;106(1):158-71 [PMID: 20332809]
  59. Ecol Evol. 2017 Apr 23;7(11):3916-3930 [PMID: 28616188]
  60. PLoS One. 2020 Jan 15;15(1):e0226087 [PMID: 31940310]
  61. Glob Chang Biol. 2020 May;26(5):2785-2797 [PMID: 32115808]
  62. Sci Adv. 2018 Jul 18;4(7):eaar6127 [PMID: 30035217]
  63. Evol Appl. 2010 May;3(3):244-62 [PMID: 25567922]
  64. PLoS One. 2015 Jun 03;10(6):e0126280 [PMID: 26039349]

Grants

  1. T32 GM007103/NIGMS NIH HHS

MeSH Term

Animals
Ecosystem
Starfish
Population Density
Genetics, Population

Word Cloud

Created with Highcharts 10.0.0geneticmortalitystarpopulationmasswastingeventsimpactsdifferentiationchangeseventseaeffectivesizerolefrequencychangeshortassociatedpotentialpre-seapost-seaspeciessitessignificantpopulation-basedhoweveracrossGeneticselectionalteringstudymonitoringAbstractMassincreasinggloballymagnitudelargelyresulthuman-inducedeffectslongtermimminentconcernecosystemGenomicdatacanusedrevealpopulation-levelusereduced-representationsequencingidentifyshort-termoutbreaktesteddiversitypopulations-asufferedhighwasting-associated75%-100%80%detectedspatialscalesampledtendedtowardestimatesdetectablyconsistenttheoreticalexpectationsrarealleleslostunabledetecttimeperiodburdenmaybornefuturegenerationsunlesswidespreadrecruitmentmitigatesdeclinePriorresultsindicatednaturalplayedallelefrequenciesfollowingadditionfoundpreviousgenomiccurrenthighlightsstochasticlossmanyindividualsplaysvariationstructuredlandscapeFutureneededdeterminelong-termlong-livedGivenincreasedimportantimplementdemographicstrategiescapturebaselinesbackgrounddynamicsbettercontextualizespecies'responseslargeperturbationsMinorConsequencesMajorMassMortality:Short-TermEffects

Similar Articles

Cited By