Global vegetation resilience linked to water availability and variability.

Taylor Smith, Niklas Boers
Author Information
  1. Taylor Smith: Institute of Geosciences, Universität Potsdam, Potsdam, Germany. tasmith@uni-potsdam.de. ORCID
  2. Niklas Boers: Potsdam Institute for Climate Impact Research, Potsdam, Germany. ORCID

Abstract

Quantifying the resilience of vegetated ecosystems is key to constraining both present-day and future global impacts of anthropogenic climate change. Here we apply both empirical and theoretical resilience metrics to remotely-sensed vegetation data in order to examine the role of water availability and variability in controlling vegetation resilience at the global scale. We find a concise global relationship where vegetation resilience is greater in regions with higher water availability. We also reveal that resilience is lower in regions with more pronounced inter-annual precipitation variability, but find less concise relationships between vegetation resilience and intra-annual precipitation variability. Our results thus imply that the resilience of vegetation responds differently to water deficits at varying time scales. In view of projected increases in precipitation variability, our findings highlight the risk of ecosystem degradation under ongoing climate change.

References

  1. Trends Plant Sci. 2010 Dec;15(12):684-92 [PMID: 20970368]
  2. Sci Rep. 2017 Jan 25;7:41489 [PMID: 28120928]
  3. Nature. 2016 Mar 10;531(7593):229-32 [PMID: 26886790]
  4. Glob Chang Biol. 2018 Jul;24(7):2929-2938 [PMID: 29350812]
  5. Ann N Y Acad Sci. 2019 Jan;1436(1):19-35 [PMID: 29943456]
  6. Nat Commun. 2021 Nov 18;12(1):6732 [PMID: 34795313]
  7. Nature. 2009 Sep 3;461(7260):53-9 [PMID: 19727193]
  8. Nat Commun. 2023 Jan 30;14(1):498 [PMID: 36717585]
  9. Nature. 2019 Apr;568(7750):25-28 [PMID: 30940972]
  10. Ecol Lett. 2006 Mar;9(3):311-8 [PMID: 16958897]
  11. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14308-12 [PMID: 18787119]
  12. Nature. 2021 Jul;595(7867):388-393 [PMID: 34262208]
  13. Sci Adv. 2018 Feb 21;4(2):eaat2340 [PMID: 29492460]
  14. Nat Commun. 2021 Jun 18;12(1):3777 [PMID: 34145253]
  15. Am Nat. 2007 Jun;169(6):738-47 [PMID: 17479460]
  16. Proc Natl Acad Sci U S A. 2021 May 25;118(21): [PMID: 34001613]
  17. Glob Chang Biol. 2019 Oct;25(10):3494-3503 [PMID: 31276270]
  18. Nature. 2020 Mar;579(7797):80-87 [PMID: 32132693]
  19. Nat Ecol Evol. 2017 Dec;1(12):1883-1888 [PMID: 29133901]
  20. Nature. 2022 Aug;608(7923):534-539 [PMID: 35831499]
  21. Sci Rep. 2018 Feb 13;8(1):2962 [PMID: 29440774]
  22. Science. 2011 Oct 14;334(6053):232-5 [PMID: 21998390]

Grants

  1. 820970/EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
  2. 956170/EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
  3. 01LS2001A/Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)

Word Cloud

Created with Highcharts 10.0.0resiliencevegetationvariabilitywaterglobalavailabilityprecipitationclimatechangefindconciseregionsQuantifyingvegetatedecosystemskeyconstrainingpresent-dayfutureimpactsanthropogenicapplyempiricaltheoreticalmetricsremotely-senseddataorderexaminerolecontrollingscalerelationshipgreaterhigheralsoreveallowerpronouncedinter-annuallessrelationshipsintra-annualresultsthusimplyrespondsdifferentlydeficitsvaryingtimescalesviewprojectedincreasesfindingshighlightriskecosystemdegradationongoingGloballinked

Similar Articles

Cited By