The Oxidative Stress-Induced Hypothetical Protein PG_0686 in Porphyromonas gingivalis W83 Is a Novel Diguanylate Cyclase.

Alexia D Ximinies, Yuetan Dou, Arunima Mishra, Kangling Zhang, Champion Deivanayagam, Charles Wang, Hansel M Fletcher
Author Information
  1. Alexia D Ximinies: Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA.
  2. Yuetan Dou: Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA.
  3. Arunima Mishra: Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA.
  4. Kangling Zhang: Department of Pharmacology, University of Texas Medical Branch, Galveston, Texas, USA.
  5. Champion Deivanayagam: Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama, USA. ORCID
  6. Charles Wang: Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA.
  7. Hansel M Fletcher: Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA. ORCID

Abstract

The survival/adaptation of Porphyromonas gingivalis to the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. Several functional classes of genes, depending on the severity and duration of the exposure, were induced in P. gingivalis under HO-induced oxidative stress. The gene was highly upregulated under prolonged oxidative stress. PG_0686, annotated as a hypothetical protein of unknown function, is a 60 kDa protein that carries several domains including hemerythrin, PAS10, and domain of unknown function (DUF)-1858. Although PG_0686 showed some relatedness to several diguanylate cyclases (DGCs), it is missing the classical conserved, active site sequence motif (GGD[/E]EF), commonly observed in other bacteria. PG_0686-related proteins are observed in other anaerobic bacterial species. The isogenic mutant P. gingivalis FLL361 (Δ::) showed increased sensitivity to HO, and decreased gingipain activity compared to the parental strain. Transcriptome analysis of P. gingivalis FLL361 showed the dysregulation of several gene clusters/operons, known oxidative stress resistance genes, and transcriptional regulators, including PG_2212, CdhR and PG_1181 that were upregulated under normal anaerobic conditions. The intracellular level of c-di-GMP in P. gingivalis FLL361 was significantly decreased compared to the parental strain. The purified recombinant PG_0686 (rPG_0686) protein catalyzed the formation of c-di-GMP from GTP. Collectively, our data suggest a global regulatory property for PG_0686 that may be part of an unconventional second messenger signaling system in P. gingivalis. Moreover, it may coordinately regulate a pathway(s) vital for protection against environmental stress, and is significant in the pathogenicity of P. gingivalis and other anaerobes. Porphyromonas gingivalis is an important etiological agent in periodontitis and other systemic diseases. There is still a gap in our understanding of the mechanisms that P. gingivalis uses to survive the inflammatory microenvironment of the periodontal pocket. The hypothetical gene was highly upregulated under prolonged oxidative stress. Although the tertiary structure of PG_0686 showed little relatedness to previously characterized diguanylate cyclases (DGCs), and does not contain the conserved GGD(/E)EF catalytic domain motif sequence, an ability to catalyze the formation of c-di-GMP from GTP is demonstrated. The second messenger pathway for c-di-GMP was previously predicted to be absent in P. gingivalis. PG_0686 paralogs are identified in other anaerobic bacteria. Thus, PG_0686 may represent a novel class of DGCs, which is yet to be characterized. In conclusion, we have shown, for the first time, evidence for the presence of c-di-GMP signaling with environmental stress protective function in P. gingivalis.

Keywords

References

  1. J Bacteriol. 2012 Mar;194(6):1582-92 [PMID: 22247513]
  2. J Bacteriol. 2018 Nov 26;200(24): [PMID: 30249709]
  3. Antioxid Redox Signal. 2009 May;11(5):981-3 [PMID: 19186997]
  4. Mol Microbiol. 2002 Apr;44(2):479-88 [PMID: 11972784]
  5. Sci Rep. 2016 Apr 07;6:23769 [PMID: 27053282]
  6. Microbiol Mol Biol Rev. 2013 Mar;77(1):1-52 [PMID: 23471616]
  7. Antioxid Redox Signal. 2009 May;11(5):997-1014 [PMID: 18999917]
  8. Microbiology (Reading). 2012 Oct;158(Pt 10):2465-2479 [PMID: 22745271]
  9. Curr Opin Rheumatol. 2013 May;25(3):345-53 [PMID: 23455329]
  10. Microbiology (Reading). 2006 Nov;152(Pt 11):3367-3382 [PMID: 17074906]
  11. PLoS Biol. 2004 Nov;2(11):e400 [PMID: 15547642]
  12. Environ Microbiol. 2018 Dec;20(12):4221-4229 [PMID: 30187651]
  13. Protein Sci. 2018 Apr;27(4):848-860 [PMID: 29330894]
  14. Curr Opin Rheumatol. 2019 Sep;31(5):517-524 [PMID: 31268867]
  15. Front Microbiol. 2015 Jan 15;5:800 [PMID: 25642228]
  16. Cell Rep Methods. 2021 Jul 26;1(3): [PMID: 34355210]
  17. Trends Microbiol. 2021 Apr;29(4):376-377 [PMID: 33546976]
  18. Arch Biochem Biophys. 2021 Jul 15;705:108917 [PMID: 33991497]
  19. Inorg Chem. 2011 Jun 6;50(11):4892-9 [PMID: 21528842]
  20. Mol Oral Microbiol. 2017 Feb;32(1):1-23 [PMID: 26662717]
  21. Antioxid Redox Signal. 2011 Mar 15;14(6):1049-63 [PMID: 20626317]
  22. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  23. Annu Rev Microbiol. 1999;53:103-28 [PMID: 10547687]
  24. Mol Biotechnol. 2009 Oct;43(2):162-6 [PMID: 19507067]
  25. Trends Microbiol. 2021 Nov;29(11):993-1003 [PMID: 33640237]
  26. J Biol Chem. 2007 Oct 5;282(40):29170-7 [PMID: 17640875]
  27. NPJ Biofilms Microbiomes. 2022 Jul 6;8(1):53 [PMID: 35794154]
  28. Annu Rev Microbiol. 2007;61:131-48 [PMID: 17480182]
  29. Microbiology (Reading). 2016 Feb;162(2):256-267 [PMID: 26581883]
  30. J Biol Chem. 2016 Jun 10;291(24):12547-12555 [PMID: 27129226]
  31. Appl Microbiol Biotechnol. 2017 May;101(10):3991-4008 [PMID: 28409384]
  32. Biochemistry. 2012 Oct 30;51(43):8563-70 [PMID: 23057727]
  33. ACS Chem Biol. 2010 Jan 15;5(1):47-62 [PMID: 19957967]
  34. Mol Microbiol. 2010 Dec;78(6):1510-22 [PMID: 21143321]
  35. J Microbiol Methods. 2022 May;196:106468 [PMID: 35439538]
  36. Nat Methods. 2015 Jan;12(1):7-8 [PMID: 25549265]
  37. Infect Immun. 2014 Jul;82(7):2728-35 [PMID: 24733094]
  38. Inorg Chem. 2013 Nov 18;52(22):13014-20 [PMID: 24187962]
  39. Nucleic Acids Res. 2000 Jan 1;28(1):304-5 [PMID: 10592255]
  40. J Mol Biol. 2016 Sep 25;428(19):3683-701 [PMID: 27498163]
  41. Electrophoresis. 2009 Jun;30 Suppl 1:S162-73 [PMID: 19517507]
  42. Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60 [PMID: 19880382]
  43. Nucleic Acids Res. 2003 Jul 1;31(13):3784-8 [PMID: 12824418]
  44. Anal Chem. 2014 Nov 4;86(21):10692-9 [PMID: 25310183]
  45. Front Cell Infect Microbiol. 2021 Jan 28;10:585917 [PMID: 33585266]
  46. J Bacteriol. 2014 Dec;196(23):4057-70 [PMID: 25225267]
  47. Sci Adv. 2019 Jan 23;5(1):eaau3333 [PMID: 30746447]
  48. J Clin Med. 2019 Aug 26;8(9): [PMID: 31454946]
  49. J Gen Physiol. 1928 Mar 20;11(4):339-48 [PMID: 19872401]
  50. FEMS Microbiol Lett. 2008 Feb;279(2):131-45 [PMID: 18081840]
  51. Mol Oral Microbiol. 2018 Feb;33(1):89-104 [PMID: 29059500]
  52. Virulence. 2014;5(8):794-809 [PMID: 25603427]
  53. Nucleic Acids Res. 2018 Apr 20;46(7):3595-3611 [PMID: 29490073]
  54. Bioinformatics. 2020 Apr 15;36(8):2628-2629 [PMID: 31882993]
  55. Appl Environ Microbiol. 2011 Jul;77(13):4647-56 [PMID: 21602393]
  56. Chem Soc Rev. 2013 Jan 7;42(1):305-41 [PMID: 23023210]
  57. Infect Immun. 2005 Sep;73(9):6169-73 [PMID: 16113342]
  58. Nat Rev Microbiol. 2017 May;15(5):271-284 [PMID: 28163311]
  59. Microbiology (Reading). 2009 Nov;155(Pt 11):3758-3774 [PMID: 19684063]
  60. BMC Bioinformatics. 2010 Aug 18;11:431 [PMID: 20718988]
  61. Curr Opin Microbiol. 2019 Feb;47:8-13 [PMID: 30396015]
  62. Mol Oral Microbiol. 2016 Aug;31(4):340-53 [PMID: 26332057]
  63. Nucleic Acids Res. 2015 Jul 1;43(W1):W174-81 [PMID: 25883148]
  64. Curr Neuropharmacol. 2017;15(7):996-1009 [PMID: 28294067]
  65. Nucleic Acids Res. 2017 Jan 4;45(D1):D313-D319 [PMID: 27899672]
  66. mBio. 2017 Oct 10;8(5): [PMID: 29018125]
  67. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 [PMID: 29788355]
  68. PLoS One. 2018 Oct 3;13(10):e0204941 [PMID: 30281647]
  69. Cancer Res. 2021 May 15;81(10):2745-2759 [PMID: 34003774]
  70. Cell Host Microbe. 2011 Nov 17;10(5):497-506 [PMID: 22036469]
  71. Mol Oral Microbiol. 2012 Jun;27(3):202-19 [PMID: 22520389]
  72. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  73. Front Mol Biosci. 2022 Aug 05;9:967059 [PMID: 35992274]
  74. Mol Microbiol. 2003 Mar;47(6):1695-708 [PMID: 12622822]
  75. Anaerobe. 2017 Feb;43:82-90 [PMID: 27940243]
  76. Nat Rev Cardiol. 2010 Sep;7(9):479-80 [PMID: 20725103]
  77. Methods Mol Biol. 2017;1657:45-58 [PMID: 28889285]
  78. Front Cell Infect Microbiol. 2019 Jul 01;9:233 [PMID: 31312617]
  79. Mucosal Immunol. 2012 Mar;5(2):112-20 [PMID: 22274780]
  80. Oral Microbiol Immunol. 2004 Aug;19(4):233-9 [PMID: 15209993]
  81. Antioxid Redox Signal. 2011 Mar 15;14(6):1065-77 [PMID: 20799881]
  82. FEMS Microbiol Lett. 2010 Nov;312(1):24-32 [PMID: 20807237]
  83. Infect Immun. 2005 Apr;73(4):2327-35 [PMID: 15784578]
  84. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  85. Science. 2010 Feb 12;327(5967):866-8 [PMID: 20150502]
  86. Future Microbiol. 2012 Apr;7(4):497-512 [PMID: 22439726]
  87. Molecules. 2022 Jun 23;27(13): [PMID: 35807291]
  88. Structure. 2009 Oct 14;17(10):1282-94 [PMID: 19836329]
  89. J Biol Chem. 2013 Sep 27;288(39):27702-11 [PMID: 23928310]
  90. Antioxid Redox Signal. 2011 Mar 15;14(6):1039-47 [PMID: 20812781]
  91. J Bacteriol. 2016 Jan;198(1):32-46 [PMID: 26055114]
  92. Nucleic Acids Res. 2012 Jan;40(Database issue):D306-12 [PMID: 22096229]
  93. BMC Evol Biol. 2008 Sep 02;8:244 [PMID: 18764950]
  94. Prikl Biokhim Mikrobiol. 2008 Jul-Aug;44(4):373-86 [PMID: 18924402]
  95. J Bacteriol. 2009 Jan;191(1):115-22 [PMID: 18931136]

Grants

  1. R01 DE025852/NIDCR NIH HHS
  2. R03 DE029825/NIDCR NIH HHS
  3. R21 DE030411/NIDCR NIH HHS

Word Cloud

Created with Highcharts 10.0.0gingivalisPPG_0686stressoxidativec-di-GMPPorphyromonasshowedgeneupregulatedproteinfunctionseveraldiguanylateDGCsanaerobicFLL361mayinflammatoryperiodontalpocketabilitygeneshighlyprolongedhypotheticalunknownincludingdomainAlthoughrelatednesscyclasesconservedsequencemotifobservedbacteriadecreasedcomparedparentalstrainformationGTPsecondmessengersignalingpathwayenvironmentalpreviouslycharacterizedsurvival/adaptationenvironmentrequiresovercomeSeveralfunctionalclassesdependingseveritydurationexposureinducedHO-inducedannotated60 kDacarriesdomainshemerythrinPAS10DUF-1858missingclassicalactivesiteGGD[/E]EFcommonlyPG_0686-relatedproteinsbacterialspeciesisogenicmutantΔ::increasedsensitivityHOgingipainactivityTranscriptomeanalysisdysregulationclusters/operonsknownresistancetranscriptionalregulatorsPG_2212CdhRPG_1181normalconditionsintracellularlevelsignificantlypurifiedrecombinantrPG_0686catalyzedCollectivelydatasuggestglobalregulatorypropertypartunconventionalsystemMoreovercoordinatelyregulatesvitalprotectionsignificantpathogenicityanaerobesimportantetiologicalagentperiodontitissystemicdiseasesstillgapunderstandingmechanismsusessurvivemicroenvironmenttertiarystructurelittlecontainGGD/EEFcatalyticcatalyzedemonstratedpredictedabsentparalogsidentifiedThusrepresentnovelclassyetconclusionshownfirsttimeevidencepresenceprotectiveOxidativeStress-InducedHypotheticalProteinW83NovelDiguanylateCyclasec-diGMPcyclase

Similar Articles

Cited By