Optimization of Media Change Intervals through Hydrogels Using Mathematical Models.

Floor A A Ruiter, Jasia King, Sangita Swapnasrita, Stefan Giselbrecht, Roman Truckenmüller, Vanessa L S LaPointe, Matthew B Baker, Aurélie Carlier
Author Information
  1. Floor A A Ruiter: MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
  2. Jasia King: MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
  3. Sangita Swapnasrita: MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
  4. Stefan Giselbrecht: MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
  5. Roman Truckenmüller: MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands. ORCID
  6. Vanessa L S LaPointe: MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands. ORCID
  7. Matthew B Baker: MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands. ORCID
  8. Aurélie Carlier: MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands. ORCID

Abstract

Three-dimensional cell culture in engineered hydrogels is increasingly used in tissue engineering and regenerative medicine. The transfer of nutrients, gases, and waste materials through these hydrogels is of utmost importance for cell viability and response, yet the translation of diffusion coefficients into practical guidelines is not well established. Here, we combined mathematical modeling, fluorescent recovery after photobleaching, and hydrogel diffusion experiments on cell culture inserts to provide a multiscale practical approach for diffusion. We observed a dampening effect of the hydrogel that slowed the response to concentration changes and the creation of a diffusion gradient in the hydrogel by media refreshment. Our designed model combined with measurements provides a practical point of reference for diffusion coefficients in real-world culture conditions, enabling more informed choices on hydrogel culture conditions. This model can be improved in the future to simulate more complicated intrinsic hydrogel properties and study the effects of secondary interactions on the diffusion of analytes through the hydrogel.

References

  1. Biophys J. 2022 Oct 18;121(20):3795-3810 [PMID: 36127879]
  2. Chem Soc Rev. 2018 Apr 3;47(7):2357-2373 [PMID: 29504613]
  3. Can J Chem Eng. 2010 Dec;88(6):899-911 [PMID: 21874065]
  4. Macromolecules. 2021 Nov 23;54(22):10477-10486 [PMID: 35601759]
  5. Stem Cells Dev. 2017 Sep 15;26(18):1293-1303 [PMID: 28707964]
  6. Pharm Res. 2001 Aug;18(8):1203-9 [PMID: 11587493]
  7. Macromolecules. 2019 Sep 24;52(18):6889-6897 [PMID: 31579160]
  8. Adv Colloid Interface Sci. 2021 Jan;287:102320 [PMID: 33296722]
  9. Acta Biomater. 2021 Apr 1;124:1-14 [PMID: 33508507]
  10. APL Bioeng. 2018 Jun 12;2(2):026110 [PMID: 31069307]
  11. Biophys J. 1997 Sep;73(3):1135-46 [PMID: 9284281]
  12. J Vis Exp. 2018 Feb 23;(132): [PMID: 29553546]
  13. J Zhejiang Univ Sci B. 2012 Jan;13(1):20-8 [PMID: 22205616]
  14. Adv Colloid Interface Sci. 2009 Aug 30;150(1):5-15 [PMID: 19481193]
  15. Methods Cell Biol. 2012;110:195-221 [PMID: 22482950]
  16. Eur J Pharm Sci. 2022 May 1;172:106150 [PMID: 35231602]
  17. Cell. 2013 Feb 28;152(5):945-56 [PMID: 23452846]
  18. Nature. 2015 Oct 22;526(7574):564-8 [PMID: 26444236]
  19. Cell Mol Life Sci. 2009 Jan;66(2):225-35 [PMID: 18850066]
  20. Traffic. 2012 Dec;13(12):1589-600 [PMID: 22984916]
  21. Mater Today Bio. 2019 Aug 19;4:100023 [PMID: 32159153]
  22. Biotechnol Bioeng. 2018 Mar;115(3):617-629 [PMID: 29205280]
  23. Comput Methods Biomech Biomed Engin. 2020 May;23(7):285-294 [PMID: 31996043]
  24. Mater Sci Eng C Mater Biol Appl. 2019 Jan 1;94:1056-1066 [PMID: 30423686]
  25. Cytometry A. 2017 Aug;91(8):810-814 [PMID: 28727252]
  26. ACS Biomater Sci Eng. 2021 Sep 13;7(9):4293-4304 [PMID: 34151570]
  27. Sci Rep. 2021 May 7;11(1):9808 [PMID: 33963247]
  28. Phys Chem Chem Phys. 2015 Jan 21;17(3):1847-58 [PMID: 25474476]
  29. Acta Biomater. 2017 May;54:35-44 [PMID: 28315813]

Grants

  1. R24 GM137787/NIGMS NIH HHS

MeSH Term

Hydrogels
Models, Theoretical
Tissue Engineering
Regenerative Medicine
Cell Survival

Chemicals

Hydrogels

Word Cloud

Created with Highcharts 10.0.0diffusionhydrogelculturecellpracticalhydrogelsresponsecoefficientscombinedmodelconditionsThree-dimensionalengineeredincreasinglyusedtissueengineeringregenerativemedicinetransfernutrientsgaseswastematerialsutmostimportanceviabilityyettranslationguidelineswellestablishedmathematicalmodelingfluorescentrecoveryphotobleachingexperimentsinsertsprovidemultiscaleapproachobserveddampeningeffectslowedconcentrationchangescreationgradientmediarefreshmentdesignedmeasurementsprovidespointreferencereal-worldenablinginformedchoicescanimprovedfuturesimulatecomplicatedintrinsicpropertiesstudyeffectssecondaryinteractionsanalytesOptimizationMediaChangeIntervalsHydrogelsUsingMathematicalModels

Similar Articles

Cited By