Population dynamics of driven by the associated natural bacterioplankton.

Yongzhi Zhang, Sen Feng, Lingyun Zhu, Meng Li, Xianling Xiang
Author Information
  1. Yongzhi Zhang: School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China.
  2. Sen Feng: School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China.
  3. Lingyun Zhu: School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China.
  4. Meng Li: School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China.
  5. Xianling Xiang: School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, China.

Abstract

Zooplankton provides bacteria with a complex microhabitat richen in organic and inorganic nutrients, and the bacteria community also changes the physiochemical conditions for zooplankton, where the symbiotic relationship between them plays an important role in the nutrient cycle. However, there are few studies on the effect of associated bacteria on the population dynamics of rotifers. In order to make clear their relationships, we reconstructed the associated bacterial community in culture, and examined the life history and population growth parameters, and analyzed the diversity and community composition of the associated bacteria at different growth stages of . The results showed that the addition of bacteria from natural water can promote the population growth and asexual reproduction of , but has no significant effect on sexual reproduction, exhibited by the improvement of its life expectancy at hatching, net reproduction rates and intrinsic growth rate, no significant effects on the generation time and mixis ratio of offspring. It was found that the -associated bacterial community was mainly composed of Proteobacteria, Bacteroidota, Actinobacteriota, Cyanobacteria and Firmicutes. Through correlation network analysis, the members of Burkholderiales, Pseudomonadales, Micrococcales, Caulobacterales and Bifidobacteriales were the keystone taxa of -associated bacteria. In addition, the relative abundance of some specific bacteria strains increased as the population density of increased, such as , , , , and , and their relative abundance increased obviously during the slow and exponential phases of population growth. Meanwhile, the relative abundance of adverse taxa (such as and Rickettsiales) decreased significantly with the increase in rotifer population density. In conclusion, the closely associated bacteria are not sufficient for the best growth of , and external bacterioplankton is necessary. Furthermore, the function of keystone and rare taxa is necessary for further exploration. The investigation of the symbiotic relationship between zooplankton-associated bacterial and bacterioplankton communities will contribute to monitoring their roles in freshwater ecosystems, and regulate the population dynamics of the micro-food web.

Keywords

References

  1. Tissue Cell. 2001 Jun;33(3):258-61 [PMID: 11469539]
  2. Appl Environ Microbiol. 2000 Mar;66(3):1139-46 [PMID: 10698783]
  3. Sci Rep. 2013 Dec 17;3:3515 [PMID: 24343271]
  4. Harmful Algae. 2017 Apr;64:63-73 [PMID: 28427573]
  5. Environ Microbiol. 2019 Oct;21(10):3737-3750 [PMID: 31222878]
  6. Sci Rep. 2021 Feb 8;11(1):3312 [PMID: 33558540]
  7. Mol Ecol. 2021 Mar;30(6):1545-1558 [PMID: 33484584]
  8. Front Microbiol. 2018 May 04;9:873 [PMID: 29780377]
  9. FEMS Microbiol Lett. 2020 Jan 1;367(2): [PMID: 32005987]
  10. ISME J. 2019 Jul;13(7):1722-1736 [PMID: 30850707]
  11. Appl Environ Microbiol. 2016 Nov 21;82(24):7236-7247 [PMID: 27742680]
  12. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11959-64 [PMID: 20547852]
  13. Syst Appl Microbiol. 2013 Dec;36(8):525-32 [PMID: 24012239]
  14. Sci Rep. 2017 Aug 30;7(1):10032 [PMID: 28855587]
  15. Front Microbiol. 2019 Aug 06;10:1750 [PMID: 31447804]
  16. PLoS One. 2017 Mar 3;12(3):e0173145 [PMID: 28257422]
  17. Environ Microbiol Rep. 2009 Feb;1(1):50-5 [PMID: 23765720]
  18. Environ Microbiol. 2016 Sep;18(8):2366-74 [PMID: 26014379]
  19. Environ Microbiol. 2017 Aug;19(8):3087-3097 [PMID: 28464425]
  20. Chemosphere. 2014 Sep;111:112-9 [PMID: 24997907]
  21. Front Microbiol. 2020 Aug 04;11:1760 [PMID: 32849387]
  22. New Phytol. 2015 Jun;206(4):1196-206 [PMID: 25655016]
  23. Microbiome. 2018 Mar 22;6(1):56 [PMID: 29566771]
  24. Arch Environ Contam Toxicol. 2016 Jul;71(1):122-32 [PMID: 27053089]
  25. Environ Microbiol. 2018 Feb;20(2):492-505 [PMID: 28967193]
  26. Nat Rev Microbiol. 2017 Oct;15(10):579-590 [PMID: 28824177]
  27. Biocontrol Sci. 2012 Mar;17(1):51-6 [PMID: 22451432]
  28. Environ Microbiol. 2011 Feb;13(2):378-90 [PMID: 20849447]
  29. Environ Monit Assess. 2016 Jun;188(6):359 [PMID: 27197729]
  30. Genet Mol Biol. 2018;41(1 suppl 1):189-197 [PMID: 29505062]
  31. Water Res. 2012 Nov 1;46(17):5799-5812 [PMID: 22939220]
  32. Rev Biol Trop. 2001 Mar;49(1):77-84 [PMID: 11795172]
  33. Transbound Emerg Dis. 2021 Mar;68(2):931-940 [PMID: 32745334]
  34. Cell Host Microbe. 2017 Jan 11;21(1):97-105 [PMID: 28017660]
  35. Appl Microbiol Biotechnol. 2016 Sep;100(17):7751-63 [PMID: 27188777]
  36. Mol Ecol. 2000 Feb;9(2):203-14 [PMID: 10672164]
  37. Microb Ecol. 2011 Nov;62(4):882-94 [PMID: 21667195]
  38. J Glob Infect Dis. 2020 Nov 30;12(4):225-227 [PMID: 33888964]
  39. Int J Syst Evol Microbiol. 2019 Aug;69(8):2179-2186 [PMID: 31204973]
  40. Front Microbiol. 2021 Jun 18;12:645362 [PMID: 34220739]
  41. BMC Evol Biol. 2014 Jul 30;14:167 [PMID: 25073875]
  42. FEMS Microbiol Ecol. 2015 Jul;91(7): [PMID: 26077986]
  43. Front Microbiol. 2013 Jun 14;4:149 [PMID: 23785358]
  44. Front Microbiol. 2015 Feb 10;6:53 [PMID: 25713563]
  45. Nat Commun. 2017 Nov 20;8(1):1608 [PMID: 29151571]
  46. Nat Rev Microbiol. 2007 Oct;5(10):782-91 [PMID: 17853906]
  47. Environ Microbiol. 2015 Oct;17(10):3822-31 [PMID: 25753990]
  48. FEMS Microbiol Ecol. 2011 Jun;76(3):592-601 [PMID: 21426363]
  49. Nat Rev Microbiol. 2018 Sep;16(9):567-576 [PMID: 29789680]
  50. Foods. 2020 Jun 12;9(6): [PMID: 32545663]
  51. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2006;41(4):543-58 [PMID: 16779930]
  52. Indian J Microbiol. 2021 Mar;61(1):81-84 [PMID: 33505096]
  53. Environ Pollut. 2021 Feb 15;271:116409 [PMID: 33418289]

Word Cloud

Created with Highcharts 10.0.0bacteriapopulationgrowthassociatedcommunitybacterioplanktondynamicsbacteriallifereproductiontaxarelativeabundanceincreasedsymbioticrelationshipeffecthistoryadditionnaturalsignificant-associatedkeystonedensitynecessaryZooplanktonprovidescomplexmicrohabitatrichenorganicinorganicnutrientsalsochangesphysiochemicalconditionszooplanktonplaysimportantrolenutrientcycleHoweverstudiesrotifersordermakeclearrelationshipsreconstructedcultureexaminedparametersanalyzeddiversitycompositiondifferentstagesresultsshowedwatercanpromoteasexualsexualexhibitedimprovementexpectancyhatchingnetratesintrinsicrateeffectsgenerationtimemixisratiooffspringfoundmainlycomposedProteobacteriaBacteroidotaActinobacteriotaCyanobacteriaFirmicutescorrelationnetworkanalysismembersBurkholderialesPseudomonadalesMicrococcalesCaulobacteralesBifidobacterialesspecificstrainsobviouslyslowexponentialphasesMeanwhileadverseRickettsialesdecreasedsignificantlyincreaserotiferconclusioncloselysufficientbestexternalFurthermorefunctionrareexplorationinvestigationzooplankton-associatedcommunitieswillcontributemonitoringrolesfreshwaterecosystemsregulatemicro-foodwebPopulationdrivenBrachionuscalyciflorushigh-throughputsequencingcharacteristics

Similar Articles

Cited By