Impact of SIV infection on mycobacterial lipid-reactive T cell responses in Bacillus Calmette-Gu��rin (BCG) inoculated macaques.
Edith M Walker, Kristen M Merino, Nadia Slisarenko, Brooke F Grasperge, Smriti Mehra, Chad J Roy, Deepak Kaushal, Namita Rout
Author Information
Edith M Walker: Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States.
Kristen M Merino: Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States.
Nadia Slisarenko: Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States.
Brooke F Grasperge: Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States.
Smriti Mehra: Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States.
Chad J Roy: Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States.
Deepak Kaushal: Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States.
Namita Rout: Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States.
中文译文
English
Background: Although BCG vaccine protects infants from tuberculosis (TB), it has limited efficacy in adults against pulmonary TB. Further, HIV coinfection significantly increases the risk of developing active TB. In the lack of defined correlates of protection in TB disease, it is essential to explore immune responses beyond conventional CD4 T cells to gain a better understanding of the mechanisms of TB immunity. Methods: Here, we evaluated unconventional lipid-reactive T cell responses in cynomolgus macaques following aerosol BCG inoculation and examined the impact of subsequent SIV infection on these responses. Immune responses to cellular lipids of and were examined ex vivo in peripheral blood and bronchioalveolar lavage (BAL). Results: Prior to BCG inoculation, innate-like IFN-�� responses to mycobacterial lipids were observed in T cells. Aerosol BCG exposure induced an early increase in frequencies of BAL ����T cells, a dominant subset of lipid-reactive T cells, along with enhanced IL-7R and CXCR3 expression. Further, BCG exposure stimulated greater IFN-�� responses to mycobacterial lipids in peripheral blood and BAL, suggesting the induction of systemic and local Th1-type response in lipid-reactive T cells. Subsequent SIV infection resulted in a significant loss of IL-7R expression on blood and BAL ����T cells. Additionally, IFN-�� responses of mycobacterial lipid-reactive T cells in BAL fluid were significantly lower in SIV-infected macaques, while perforin production was maintained through chronic SIV infection. Conclusions: Overall, these data suggest that despite SIV-induced decline in IL-7R expression and IFN-�� production by mycobacterial lipid-reactive T cells, their cytolytic potential is maintained. A deeper understanding of anti-mycobacterial lipid-reactive T cell functions may inform novel approaches to enhance TB control in individuals with or without HIV infection.
J Exp Med. 2004 Mar 1;199(5):649-59
[PMID: 14981115 ]
Virology. 2006 Dec 5-20;356(1-2):188-97
[PMID: 16934309 ]
J Immunol. 2002 Jul 1;169(1):330-9
[PMID: 12077262 ]
Nature. 2000 Apr 20;404(6780):884-8
[PMID: 10786796 ]
Adv Immunol. 2009;102:1-94
[PMID: 19477319 ]
Lancet. 1995 Nov 18;346(8986):1339-45
[PMID: 7475776 ]
Nat Rev Microbiol. 2009 Dec;7(12):845-55
[PMID: 19855401 ]
J Clin Invest. 2011 Jun;121(6):2493-503
[PMID: 21576820 ]
Int J Infect Dis. 2022 Nov;124 Suppl 1:S26-S29
[PMID: 35321845 ]
Vaccines (Basel). 2021 Aug 25;9(9):
[PMID: 34579182 ]
Vaccine. 2011 Apr 5;29(16):2902-9
[PMID: 21338678 ]
J Infect Dis. 2005 Jan 15;191(2):150-8
[PMID: 15609223 ]
Eur J Immunol. 2000 Sep;30(9):2713-21
[PMID: 11009107 ]
Immunogenetics. 2016 Aug;68(8):515-23
[PMID: 27470004 ]
PLoS Pathog. 2022 Jul 25;18(7):e1010721
[PMID: 35877763 ]
J Pharmacol Toxicol Methods. 2004 Jan-Feb;49(1):39-55
[PMID: 14670693 ]
Chem Biol. 2009 Jan 30;16(1):82-92
[PMID: 19171308 ]
Infect Immun. 2009 Nov;77(11):5071-9
[PMID: 19737909 ]
Front Immunol. 2022 Mar 10;13:840225
[PMID: 35359957 ]
Clin Vaccine Immunol. 2015 Sep;22(9):992-1003
[PMID: 26108288 ]
Sci Rep. 2018 Nov 15;8(1):16840
[PMID: 30443026 ]
J Immunol. 2000 Jul 1;165(1):353-63
[PMID: 10861072 ]
EClinicalMedicine. 2022 Feb 12;44:101298
[PMID: 35198922 ]
J Med Primatol. 2014 Feb;43(1):31-43
[PMID: 24266615 ]
J Infect Dis. 2010 Aug 15;202(3):480-9
[PMID: 20569158 ]
Tuberculosis (Edinb). 2005 Sep-Nov;85(5-6):407-13
[PMID: 16249121 ]
J Infect Dis. 2012 Apr 1;205(7):1035-42
[PMID: 22396610 ]
Biomed Res Int. 2014;2014:273129
[PMID: 25548767 ]
Science. 1995 Jul 14;269(5221):227-30
[PMID: 7542404 ]
Curr Top Microbiol Immunol. 2007;314:215-50
[PMID: 17593663 ]
PLoS Pathog. 2012 Sep;8(9):e1002928
[PMID: 23028326 ]
J Clin Invest. 2019 Dec 2;129(12):5254-5260
[PMID: 31479428 ]
J Immunol. 2006 Aug 1;177(3):1805-16
[PMID: 16849491 ]
Nat Med. 2011 Mar;17(3):372-6
[PMID: 21336285 ]
J Exp Med. 2001 Feb 5;193(3):271-80
[PMID: 11157048 ]
J Virol. 2002 Aug;76(15):7528-34
[PMID: 12097565 ]
J Infect Dis. 2012 Apr 15;205(8):1203-13
[PMID: 22402035 ]
Infect Agents Dis. 1996 Mar;5(2):73-81
[PMID: 8721044 ]
EBioMedicine. 2022 Feb;76:103839
[PMID: 35149285 ]
J Immunol. 2005 May 15;174(10):5926-30
[PMID: 15879083 ]
EBioMedicine. 2021 Feb;64:103233
[PMID: 33610126 ]
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22944-22952
[PMID: 32868441 ]
Nature. 2020 Jan;577(7788):95-102
[PMID: 31894150 ]
Tuberculosis (Edinb). 2018 Jan;108:99-105
[PMID: 29523335 ]
BMC Infect Dis. 2008 Jan 25;8:9
[PMID: 18221509 ]
Nat Commun. 2015 Oct 13;6:8533
[PMID: 26460802 ]
J Immunol. 2005 Mar 1;174(5):2900-9
[PMID: 15728501 ]
J Immunol. 2001 Sep 1;167(5):2734-42
[PMID: 11509617 ]
J Immunol. 2015 Nov 15;195(10):4595-603
[PMID: 26466957 ]
Pharmaceutics. 2020 Apr 25;12(5):
[PMID: 32344890 ]
Clin Infect Dis. 2014 Feb;58(4):470-80
[PMID: 24336911 ]
AIDS Res Hum Retroviruses. 2012 Dec;28(12):1693-702
[PMID: 22480184 ]
J Infect Dis. 2016 Feb 15;213(4):628-33
[PMID: 26374910 ]
J Acquir Immune Defic Syndr. 2000 Jan 1;23(1):75-80
[PMID: 10708059 ]
J Immunol. 2009 Jun 15;182(12):8047-55
[PMID: 19494330 ]
Science. 2002 Mar 22;295(5563):2255-8
[PMID: 11910108 ]
N Engl J Med. 2013 Feb 21;368(8):745-55
[PMID: 23425167 ]
Nature. 1989 Oct 5;341(6241):447-50
[PMID: 2477705 ]
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12210-5
[PMID: 11035787 ]
J Immunol. 2021 Mar 15;206(6):1240-1250
[PMID: 33536255 ]
Tuberculosis (Edinb). 2016 Jan;96:120-30
[PMID: 26586646 ]
BMC Infect Dis. 2020 May 7;20(1):325
[PMID: 32380957 ]
Clin Immunol. 2018 Mar;188:103-112
[PMID: 29330114 ]
J Biol Chem. 1997 Sep 12;272(37):23094-103
[PMID: 9287310 ]
BMC Immunol. 2019 Oct 11;20(1):35
[PMID: 31601184 ]
PLoS One. 2016 Jun 16;11(6):e0157407
[PMID: 27309719 ]
Immunol Cell Biol. 2014 Aug;92(7):578-90
[PMID: 24777308 ]
J Immunol. 2016 Feb 15;196(4):1933-42
[PMID: 26755823 ]
J Exp Med. 2005 Jun 20;201(12):1915-24
[PMID: 15955839 ]
Int Immunol. 2003 Aug;15(8):915-25
[PMID: 12882829 ]
Nat Immunol. 2013 Jul;14(7):706-13
[PMID: 23727893 ]
J Immunol. 2014 Apr 1;192(7):3247-58
[PMID: 24574499 ]
BMC Immunol. 2013;14 Suppl 1:S13
[PMID: 23458474 ]
J Infect Dis. 2014 Apr 15;209(8):1259-68
[PMID: 24273174 ]
Eur J Immunol. 2012 Sep;42(9):2505-10
[PMID: 22829134 ]
J Infect Dis. 2010 Oct 15;202(8):1265-72
[PMID: 20812851 ]
J Virol. 2009 Feb;83(4):1617-24
[PMID: 19052081 ]
U42 OD024282/NIH HHS
P51 OD011104/NIH HHS
P20 GM103629/NIGMS NIH HHS
R21 AI140840/NIAID NIH HHS
U42 OD010568/NIH HHS
P51 OD011133/NIH HHS
R33 AI136100/NIAID NIH HHS
Animals
BCG Vaccine
HIV Infections
Macaca
Respiratory Aerosols and Droplets
Mycobacterium bovis
Tuberculosis
Lipids