Environmentally-Friendly Pesticidal Activities of Callicarpa and Karomia Essential Oils from Vietnam and Their Microemulsions.

Nguyen Huy Hung, Pham Minh Quan, Do Ngoc Dai, Prabodh Satyal, Le Thi Huong, Le Duc Giang, Le Thanh Hung, William N Setzer
Author Information
  1. Nguyen Huy Hung: Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 50000, Vietnam. ORCID
  2. Pham Minh Quan: Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Vietnam.
  3. Do Ngoc Dai: Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Vietnam.
  4. Prabodh Satyal: Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.
  5. Le Thi Huong: School of Natural Science Education, Vinh University, 182 Le Duan, Vinh City, 43000, Nghe An Province, Vietnam.
  6. Le Duc Giang: School of Natural Science Education, Vinh University, 182 Le Duan, Vinh City, 43000, Nghe An Province, Vietnam.
  7. Le Thanh Hung: School of Natural Science Education, Vinh University, 182 Le Duan, Vinh City, 43000, Nghe An Province, Vietnam.
  8. William N Setzer: Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA. ORCID

Abstract

There is an ongoing interest to identify alternative pesticidal agents to avoid the chronic problems associated with synthetic pesticides. Essential oils have shown promise as botanical pest control agents. In the present study, the essential oils of four members of the Lamiaceae (Callicarpa candicans, C. erioclona, C. macrophylla, and Karomia fragrans; Vietnamese names: Nàng nàng, Tu châu lông mem, Tu châu lá to and Cà diện, respectively), obtained from wild populations in Vietnam, have been obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The essential oils were formulated into microemulsions and the essential oils and their microemulsions were screened for mosquito larvicidal activity against Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and for molluscicidal activity against Pomacea canaliculata. Atractylone and (E)-caryophyllene dominated the volatiles of C. candicans (CCEO) and C. erioclona (CEEO), while the major component in C. macrophylla (CMEO) and K. fragrans (KFEO) was (E)-caryophyllene. The essential oils and microemulsions of both C. candicans and C. erioclona exhibited excellent larvicidal activity against all three mosquito species (Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus) with LC values <10 μg/mL. Additionally, the larvicidal activity of the microemulsions were significantly improved compared with their free essential oils, especially for C. candicans and C. erioclona. All four essential oils and their microemulsions showed excellent molluscicidal activity with LC <10 μg/mL. In most cases, the essential oils and microemulsions showed greater pesticidal activity against target organisms than the non-target freshwater fish, Oreochromis niloticus. The in silico studies on physicochemical and ADMET properties of the major components in the studied essential oils were also investigated and most of the compounds possessed a favorable ADMET profile. Computational modeling studies of the studied compounds demonstrated a favorable binding interaction with the mosquito odorant-binding protein target and support atractylone, β-selinene, and caryophyllene oxide as potential inhibitors. Based on the observed pesticidal activities of the essential oils and their microemulsions, the Callicarpa species and K. fragrans should be considered for potential cultivation and further exploration as botanical pesticidal agents.

Keywords

References

  1. WHO, ‘A Global Brief on Vector-Borne Diseases’, World Heal. Organ. 2014, 9.
  2. T. Pereira dos santos, D. Roiz, R. Lourenço de oliveira, C. Paupy, ‘A systematic review: Is Aedes albopictus an efficient bridge vector for zoonotic arboviruses’, Pathogenesis 2020, 1-24.
  3. J. A. Souza-Neto, J. R. Powell, M. Bonizzoni, ‘Aedes aegypti vector competence studies: A review’, Infect. Genet. Evol. 2019, 67, 191-209.
  4. C. Dieme, A. T. Ciota, L. D. Kramer, ‘Transmission potential of Mayaro virus by Aedes albopictus, and Anopheles quadrimaculatus from the USA’, Parasites and Vectors 2020, 13, 613.
  5. T. N. Pereira, F. D. Carvalho, S. F. De Mendonça, M. N. Rocha, L. A. Moreira, ‘Vector competence of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes for Mayaro virus’, PLoS Neglected Trop. Dis. 2020, 14, e0007518.
  6. M. E. Ramos-Nino, D. M. Fitzpatrick, S. Tighe, K. M. Eckstrom, L. M. Hattaway, A. N. Hsueh, D. M. Stone, J. Dragon, S. Cheetham, ‘High prevalence of Phasi Charoen-like virus from wild-caught Aedes aegypti in Grenada, WI as revealed by metagenomic analysis’, PLoS One 2020, 15, 1-13.
  7. O. W. Lwande, V. Obanda, A. Lindström, C. Ahlm, M. Evander, J. Näslund, G. Bucht, ‘Globe-trotting Aedes aegypti and Aedes albopictus: Risk factors for arbovirus pandemics’, Vector-Borne Zoonotic Dis. 2020, 20, 71-81.
  8. P. Rai, M. Bharati, A. Subba, D. Saha, ‘Insecticide resistance mapping in the vector of lymphatic filariasis, Culex quinquefasciatus Say from northern region of West Bengal, India’, PLoS One 2019, 14, e0217706.
  9. S. Bhattacharya, P. Basu, ‘The southern house mosquito, Culex quinquefasciatus: profile of a smart vector’, J. Entomol. Zool. Stud. 2016, 4, 73-81.
  10. K. L. Mansfield, L. M. Hernández-triana, A. C. Banyard, A. R. Fooks, N. Johnson, ‘Japanese encephalitis virus infection, diagnosis and control in domestic animals’, Vet. Microbiol. 2017, 201, 85-92.
  11. C. L. Cook, Y.-J. S. Huang, A. C. Lyons, B. W. Alto, I. Unlu, S. Higgs, D. L. Vanlandingham, ‘North American Culex pipiens and Culex quinquefasciatus are competent vectors for Usutu virus’, PLoS Neglected Trop. Dis. 2018, 12, e0006732.
  12. J. Barratt, D. Chan, I. Sandaradura, R. Malik, D. Spielman, R. Lee, D. Marriott, J. Harkness, J. Ellis, D. Stark, ‘Angiostrongylus cantonensis: a review of its distribution, molecular biology and clinical significance as a human pathogen’ Parasitology 2016, 1087-1118.
  13. S. Lv, Y. H. Guo, H. M. Nguyen, M. Sinuon, S. Sayasone, N. C. Lo, X. N. Zhou, J. R. Andrews, ‘Invasive Pomacea snails as important intermediate hosts of Angiostrongylus cantonensis in Laos, Cambodia and Vietnam: Implications for outbreaks of eosinophilic meningitis’, Acta Trop. 2018, 183, 32-35.
  14. A. Mcbride, T. T. H. Chau, N. T. T. Hong, N. T. H. Mai, N. T. Anh, T. T. Thanh, T. T. H. Van, L. T. Xuan, T. P. M. Sieu, L. H. Thai, L. Van Chuong, D. X. Sinh, N. D. Phong, N. H. Phu, J. Day, H. D. T. Nghia, T. T. Hien, N. V. V. Chau, G. Thwaites, L. V. Tan, ‘Angiostrongylus cantonensis is an important cause of eosinophilic meningitis in Southern Vietnam’, Clin. Infect. Dis. 2017, 64, 1784-1787.
  15. L. R. Mozzer, A. L. Coaglio, R. M. Dracz, V. M. A. Ribeiro, W. S. Lima, ‘The development of Angiostrongylus vasorum (Baillet, 1866) in the freshwater snail Pomacea canaliculata (Lamarck, 1822)’, J. Helminthol. 2017, 755-759.
  16. C. Komalamisra, S. Nuamtanong, P. Dekumyoy, ‘Pila ampullacea and Pomacea canaliculata, as new paratenic hosts of Gnathostoma spinigerum’, Asian J. Trop. Med. public Heal. 2009, 40, 243-246.
  17. W. Chobchuenchom, A. Bhumiratana, ‘Isolation and characterization of pathogens attacking Pomacea canaliculata’, World J. Microbiol. Biotechnol. 2003, 19, 903-906.
  18. K. G. Hortle, ‘Liver and intestinal flukes: an underrated health risk in the Mekong Basin’, Catch Cult. 2017, 14, 14-18.
  19. R. Toledo, J. G. Esteban, ‘An update on human echinostomiasis’, Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 37-45.
  20. M. Halwart, ‘The golden apple snail Pomacea canaliculata in Asian rice farming systems: Present impact and future threat’, Int. J. Pest Manage. 1994, 40, 199-206.
  21. R. Naylor, ‘Invasions in agriculture: assessing the cost of the golden apple snail in Asia’, Ambio 1996, 25, 443-448.
  22. D. V. Tu, N. P. Nha, R. C. Joshi, ‘Invasive apple snails (Pomacea spp.) in Vietnam: Short review’, Aquaculture 2018, 22, 3-8.
  23. R. Pavela, ‘Essential oils for the development of eco-friendly mosquito larvicides: A review’, Ind. Crops Prod. 2015, 76, 174-187.
  24. L. P. L. A. Pereira, E. C. G. Ribeiro, M. C. A. Brito, D. P. B. Silveira, F. O. S. Araruna, F. B. Araruna, J. A. C. Leite, A. A. S. Dias, W. da C A Firmo, M. O. da R da Rocha Borges, A. C. R. Borges, D. F. Coutinho, ‘Essential oils as molluscicidal agents against schistosomiasis transmitting snails - a review’, Acta Trop. 2020, 209, 105489.
  25. W. J. Silva, G. A. A. Dória, R. T. Maia, R. S. Nunes, G. A. Carvalho, A. F. Blank, P. B. Alves, R. M. Marҫal, S. C. H. Cavalcanti, ‘Effects of essential oils on Aedes aegypti larvae: Alternatives to environmentally safe insecticides’, Bioresour. Technol. 2008, 99, 3251-3255.
  26. F. Esmaili, A. Sanei-Dehkordi, F. Amoozegar, M. Osanloo, ‘A review on the use of essential oil-based nanoformulations in control of mosquitoes’, Biointerface Res. Appl. Chem. 2021, 11, 12516-12529.
  27. I. F. Mustafa, M. Z. Hussein, ‘Synthesis and technology of nanoemulsion-based pesticide formulation’, Nanomaterials 2020, 10, 1608.
  28. M. Chandra, O. Prakash, R. Kumar, R. K. Bachheti, ‘β-Selinene-rich essential oils from the parts of Callicarpa macrophylla and their antioxidant and pharmacological activities’, Medicine 2017, 4, 52.
  29. J. Xu, Y. Sun, M. Wang, Q. Ren, S. Li, H. Wang, X. Sun, D. Q. Jin, H. Sun, Y. Ohizumi, Y. Guo, ‘Bioactive diterpenoids from the leaves of Callicarpa macrophylla’, J. Nat. Prod. 2015, 78, 1563-1569.
  30. V. X. Phuông, Flora of Vietnam, Vol. 6 - Verbenaceae, Science & Technics Publishing House, Hanoi, Vietnam, 2007.
  31. N. H. Hung, L. T. Huong, N. T. Chung, N. Thi, H. Thuong, P. Satyal, N. A. Dung, T. A. Tai, W. N. Setzer, ‘Callicarpa species from central Vietnam: Essential oil compositions and mosquito larvicidal activities’, Plants 2020, 9, 113.
  32. Y. X. Wu, W. W. Lu, Y. C. Geng, C. H. Yu, H. J. Sun, Y. J. Kim, G. Zhang, T. Kim, ‘Antioxidant, antimicrobial and anti-Inflammatory activities of essential oil derived from the wild rhizome of Atractylodes macrocephala’, Chem. Biodiversity 2020, 17, e2000268.
  33. A. C. L. Amorim, C. K. F. Lima, A. M. C. Hovell, A. L. P. Miranda, C. M. Rezende, ‘Antinociceptive and hypothermic evaluation of the leaf essential oil and isolated terpenoids from Eugenia uniflora L. (Brazilian Pitanga)’, Phytomedicine 2009, 16, 923-928.
  34. M. Santana de Oliveira, J. N. da Cruz, W. Almeida da Costa, S. G. Silva, M. D. P. Brito, S. A. F. de Menezes, A. M. de Jesus Chaves Neto, E. H. de Aguiar Andrade, R. N. de Carvalho, ‘Chemical composition, antimicrobial properties of siparuna guianensis essential oil and a molecular docking and dynamics molecular study of its major chemical constituent’, Molecules 2020, 25, 3852.
  35. J. I. Burneo, Á. Benítez, J. Calva, P. Velastegui, V. Morocho, ‘Soil and leaf nutrients drivers on the chemical composition of the essential oil of Siparuna muricata (Ruiz & Pav.) A. DC. from Ecuador’, Molecules 2021, 26, 2949.
  36. R. Pavela, G. Benelli, L. Pavoni, G. Bonacucina, M. Cespi, K. Cianfaglione, I. Bajalan, M. R. Morshedloo, G. Lupidi, D. Romano, A. Canale, F. Maggi, ‘Microemulsions for delivery of Apiaceae essential oils - Towards highly effective and eco-friendly mosquito larvicides?’, Ind. Crops Prod. 2019, 129, 631-640.
  37. M. Cespi, L. Quassinti, D. R. Perinelli, M. Bramucci, R. Iannarelli, F. Papa, M. Ricciutelli, G. Bonacucina, G. F. Palmieri, F. Maggi, ‘Microemulsions enhance the shelf-life and processability of Smyrnium olusatrum L. essential oil’, Flavour Fragrance J. 2017, 32, 159-164.
  38. A. A. Date, M. S. Nagarsenker, ‘Parenteral microemulsions: An overview’, Int. J. Pharm. 2008, 355, 19-30.
  39. J. Flanagan, K. Kortegaard, D. Neil Pinder, T. Rades, H. Singh, ‘Solubilisation of soybean oil in microemulsions using various surfactants’, Food Hydrocolloids 2006, 20, 253-260.
  40. J. Xu, Q. J. Fan, Z. Q. Yin, X. T. Li, Y. H. Du, R. Y. Jia, K. Y. Wang, C. Lv, G. Ye, Y. Geng, G. Su, L. Zhao, T. X. Hu, F. Shi, L. Zhang, C. L. Wu, C. Tao, Y. X. Zhang, D. X. Shi, ‘The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro’, Vet. Parasitol. 2010, 169, 399-403.
  41. T. J. Wooster, D. Labbett, P. Sanguansri, H. Andrews, ‘Impact of microemulsion inspired approaches on the formation and destabilisation mechanisms of triglyceride nanoemulsions’, Soft Matter 2016, 12, 1425-1435.
  42. N. Garti, A. Yaghmur, M. E. Leser, V. Clement, H. J. Watzke, ‘Improved oil solubilization in oil/water food grade microemulsions in the presence of polyols and ethanol’, J. Agric. Food Chem. 2001, 49, 2552-2562.
  43. T. S. Awad, D. Asker, L. S. Romsted, ‘Evidence of coexisting microemulsion droplets in oil-in-water emulsions revealed by 2D DOSY 1 H-NMR’, J. Colloid Interface Sci. 2018, 514, 83-92.
  44. T. Mudalige, H. Qu, D. Van Haute, S. M. Ansar, A. Paredes, T. Ingle, in Nanomater. Food Appl. (Eds.: A. López Rubio, M. J. Fabra Rovira, M. Martínez Sanz, L. G. Gómez-Mascaraque), Elsevier B. V., Amsterdam, Netherlands, 2019, pp. 313-353.
  45. E. Sieniawska, Ł. Świątek, M. Wota, B. Rajtar, M. Polz-Dacewicz, ‘Microemulsions of essentials oils - Increase of solubility and antioxidant activity or cytotoxicity?’, Food Chem. Toxicol. 2019, 129, 115-124.
  46. C. Monteiller, L. Tran, W. MacNee, S. Faux, A. Jones, B. Miller, K. Donaldson, ‘The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: The role of surface area’, Occup. Environ. Med. 2007, 64, 609-615.
  47. A. E. Nel, L. Mädler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, ‘Understanding biophysicochemical interactions at the nano-bio interface’, Nat. Mater. 2009, 8, 543-557.
  48. A. R. Montefuscoli, J. O. Werdin González, S. D. Palma, A. A. Ferrero, B. Fernández Band, ‘Design and development of aqueous nanoformulations for mosquito control’, Parasitol. Res. 2014, 113, 793-800.
  49. S. Okonogi, W. Chaiyana, ‘Enhancement of anti-cholinesterase activity of Zingiber cassumunar essential oil using a microemulsion technique’, Drug Discov. Ther. 2012, 6, 249-255.
  50. X. Jun, P. Fu, Y. Lei, P. Cheng, ‘Pharmacological effects of medicinal components of Atractylodes lancea (Thunb.) DC.’, Chin. Med. 2018, 13, 59.
  51. H. K. Kim, Y. K. Yun, Y. J. Ahn, ‘Toxicity of atractylon and atractylenolide III identified in Atractylodes ovata rhizome to Dermatophagoides farinae and Dermatophagoides pteronyssinus’, J. Agric. Food Chem. 2007, 55, 6027-6031.
  52. S. S. Chu, G. H. Jiang, Z. L. Liu, ‘Insecticidal compounds from the essential oil of Chinese medicinal herb Atractylodes chinensis’, Pest Manage. Sci. 2011, 67, 1253-1257.
  53. ‘Special Programme for Research and Training in Tropical’, World Heal. Organ. 1983.
  54. L. Dai, W. Wang, X. Dong, R. Hu, X. Nan, ‘Molluscicidal activity of cardiac glycosides from Nerium indicum against Pomacea canaliculata and its implications for the mechanisms of toxicity’, Environ. Toxicol. Pharmacol. 2011, 32, 226-232.
  55. H. Zhang, H. H. Xu, Z. J. Song, L. Y. Chen, H. J. Wen, ‘Molluscicidal activity of Aglaia duperreana and the constituents of its twigs and leaves’, Fitoterapia 2012, 83, 1081-1086.
  56. X. Shen, Z. Wang, L. Liu, Z. Zou, ‘Molluscicidal activity of Solidago canadensis L. extracts on the snail Pomacea canaliculata Lam’, Pestic. Biochem. Physiol. 2018, 149, 104-112.
  57. R. C. Joshi, K. M. Meepagala, G. Sturtz, A. G. Cagauan, C. O. Mendoza, F. E. Dayan, S. O. Duke, ‘Molluscicidal activity of vulgarone B from Artemisia douglasiana (Besser) against the invasive, alien, mollusc pest, Pomacea canaliculata (Lamarck)’, Int. J. Pest Manage. 2005, 51, 175-180.
  58. C. Yang, M. Zhang, B. Lei, G. Gong, G. Yue, X. Chang, X. Sun, Y. Tian, H. Chen, ‘Active saponins from root of Pueraria peduncularis (Grah. ex Benth.) Benth. and their molluscicidal effects on Pomacea canaliculata’, Pest Manage. Sci. 2017, 73, 1143-1147.
  59. H. C. Huang, S. C. Liao, F. R. Chang, Y. H. Kuo, Y. C. Wu, ‘Molluscicidal saponins from Sapindus mukorossi, inhibitory agents of golden apple snails, Pomacea canaliculata’, J. Agric. Food Chem. 2003, 51, 4916-4919.
  60. N. H. Hung, D. N. Dai, P. Satyal, L. T. Huong, B. T. Chinh, D. Q. Hung, T. A. Tai, W. N. Setzer, ‘Lantana camara essential oils from Vietnam: Chemical composition, molluscicidal, and mosquito larvicidal activity’, Chem. Biodiversity 2021, 18, e2100145.
  61. C. G. Faustino, F. A. de Medeiros, A. K. Ribeiro Galardo, A. B. Lobato Rodrigues, R. Lopes Martins, Y. de Medeiros Souza Lima, J. Fechine Tavares, M. A. Alves de Medeiros, J. dos Santos Cruz, S. S. M. D. S. D. Almeida, ‘Larvicide activity on Aedes aegypti of essential oil nanoemulsion from the Protium heptaphyllum resin’, Molecules 2020, 25, 5333.
  62. S. Firooziyan, A. Amani, M. Osanloo, S. H. Moosa-Kazemi, H. R. Basseri, H. M. Hajipirloo, A. Sadaghianifar, M. M. Sedaghat, ‘Preparation of nanoemulsion of Cinnamomum zeylanicum oil and evaluation of its larvicidal activity against a main malaria vector Anopheles stephensi’, J. Enviromental Heal. Sci. Eng. 2021, 19, 1025-1034.
  63. G. Moroy, V. Y. Martiny, P. Vayer, B. O. Villoutreix, M. A. Miteva, ‘Toward in silico structure-based ADMET prediction in drug discovery’, Drug Discovery Today 2012, 17, 44-55.
  64. M. Pechlaner, C. Oostenbrink, ‘Multiple binding poses in the hydrophobic cavity of bee odorant binding protein AmelOBP14’, J. Chem. Inf. Model. 2015, 55, 2633-2643.
  65. M. Q. Daniel, ‘Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states’, Chem. Rev. 1987, 87, 955-979.
  66. U. Gowthaman, M. Jayakanthan, D. Sundar, ‘Molecular docking studies of dithionitrobenzoic acid and its related compounds to protein disulfide isomerase: Computational screening of inhibitors to HIV-1 entry’, BMC Bioinf. 2008, 9, 1-10.
  67. H. Gohlke, M. Hendlich, G. Klebe, ‘Knowledge-based scoring function to predict protein-ligand interactions’, J. Mol. Biol. 2000, 295, 337-356.
  68. N. T. Nguyen, T. H. Nguyen, T. N. H. Pham, N. T. Huy, M. Van Bay, M. Q. Pham, P. C. Nam, V. V. Vu, S. T. Ngo, ‘Autodock vina adopts more accurate binding poses but autodock4 forms better binding affinity’, J. Chem. Inf. Model. 2020, 60, 204-211.
  69. N. H. Hung, P. Satyal, D. N. Dai, T. A. Tai, L. T. Huong, N. T. H. Chuong, H. V. Hieu, P. A. Tuan, P. Van Vuong, W. N. Setzer, ‘Chemical compositions of crassocephalum crepidioides essential oils and larvicidal activities against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus’, Nat. Prod. Commun. 2019, 14, 1934578X19850033.
  70. R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, Allured Publishing, Carol Stream, IL, USA, 2007.
  71. L. Mondello, FFNSC 3, Shimadzu Scientific Instruments, Columbia, Maryland, USA, 2016.
  72. NIST17, NIST17, National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 2017.
  73. P. Satyal, Development of GC/MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils, Ph.D. dissertation, University of Alabama in Huntsville, 2015.
  74. N. Anton, J. P. Benoit, P. Saulnier, ‘Design and production of nanoparticles formulated from nano-emulsion templates - a review’, J. Controlled Release 2008, 128, 185-199.
  75. S. Mayer, J. Weiss, D. J. McClements, ‘Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: Factors influencing droplet size and stability’, J. Colloid Interface Sci. 2013, 402, 122-130.
  76. W. Ding, R. Huang, Z. Zhou, H. He, Y. Li, ‘Ambrosia artemisiifolia as a potential resource for management of golden apple snails, Pomacea canaliculata (Lamarck)’, Pest Manage. Sci. 2018, 74, 944-949.
  77. N. H. Hung, L. T. Huong, N. T. Chung, N. C. Truong, D. N. Dai, P. Satyal, T. A. Tai, V. T. Hien, W. N. Setzer, ‘Premna species in Vietnam: Essential oil compositions and mosquito larvicidal activities’, Plants 2020, 9, 1130.
  78. L. Schrodinger, ‘The PyMOL Molecular Graphics System, Version 1.3r1.’ 2010.
  79. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, ‘2009. 09, Revision D. 01, Gaussian. Inc., Wallingford, CT.’ 2009.
  80. Y. Mao, X. Xu, W. Xu, Y. Ishida, W. S. Leal, J. B. Ames, J. Clardy, ‘Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone’, Proc. Nat. Acad. Sci. 2010, 107, 19102-19107.
  81. J. Cheung, M. J. Rudolph, F. Burshteyn, M. S. Cassidy, E. N. Gary, J. Love, M. C. Franklin, J. J. Height, ‘Structures of human acetylcholinesterase in complex with pharmacologically important ligands’, J. Med. Chem. 2012, 55, 10282-10286.
  82. G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, ‘AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility’, J. Comput. Chem. 2009, 30, 2785-2791.
  83. D. Finney, Probit Analysis, Cambridge University Press, Cambridge, UK, 2009.

Grants

  1. 106.03-2019.25/NAFOSTED (Vietnam)

MeSH Term

Animals
Oils, Volatile
Pesticides
Callicarpa
Vietnam
Insecticides
Aedes
Lamiaceae
Larva

Chemicals

Oils, Volatile
caryophyllene
Pesticides
Insecticides

Word Cloud

Created with Highcharts 10.0.0oilsessentialCmicroemulsionsactivityCallicarpapesticidal erioclonalarvicidalagentsKaromiamosquitomolluscicidal candicansEssentialbotanicalfourcandicans macrophyllafragransTuchâuobtainedVietnamAedesE-caryophyllenemajorK fragransexcellentspeciesAeLC<10 μg/mLshowedtargetstudiesADMETstudiedcompoundsfavorablepotentialongoinginterestidentifyalternativeavoidchronicproblemsassociatedsyntheticpesticidesshownpromisepestcontrolpresentstudymembersLamiaceaeVietnamesenames:Nàngnànglôngmemdiệnrespectivelywildpopulationshydrodistillationanalyzedgaschromatography-massspectrometryformulatedscreenedaegyptialbopictusCulexquinquefasciatusPomaceacanaliculataAtractylonedominatedvolatilesCCEOCEEOcomponentCMEOKFEOexhibitedthree aegypti albopictusCx quinquefasciatusvaluesAdditionallysignificantlyimprovedcomparedfreeespeciallycasesgreaterorganismsnon-targetfreshwaterfishOreochromisniloticusin silicophysicochemicalpropertiescomponentsalsoinvestigatedpossessedprofileComputationalmodelingdemonstratedbindinginteractionodorant-bindingproteinsupportatractyloneβ-selinenecaryophylleneoxideinhibitorsBasedobservedactivitiesconsideredcultivationexplorationEnvironmentally-FriendlyPesticidalActivitiesOilsMicroemulsionsCalliarpaerioclonamacrophylla

Similar Articles

Cited By