Draft genome assemblies of the avian louse Brueelia nebulosa and its associates using long-read sequencing from an individual specimen.
Andrew D Sweet, Daniel R Browne, Alvaro G Hernandez, Kevin P Johnson, Stephen L Cameron
Author Information
Andrew D Sweet: Department of Biological Sciences, Arkansas State University, 2713 Pawnee Street, Jonesboro, AR 72401, USA.
Daniel R Browne: Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA.
Alvaro G Hernandez: Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Kevin P Johnson: Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
Stephen L Cameron: Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.
中文译文
English
Sequencing high molecular weight (HMW) DNA with long-read and linked-read technologies has promoted a major increase in more complete genome sequences for nonmodel organisms. Sequencing approaches that rely on HMW DNA have been limited to larger organisms or pools of multiple individuals, but recent advances have allowed for sequencing from individuals of small-bodied organisms. Here, we use HMW DNA sequencing with PacBio long reads and TELL-Seq linked reads to assemble and annotate the genome from a single individual feather louse (Brueelia nebulosa) from a European Starling (Sturnus vulgaris). We assembled a genome with a relatively high scaffold N50 (637 kb) and with BUSCO scores (96.1%) comparable to louse genomes assembled from pooled individuals. We annotated a number of genes (10,938) similar to the human louse (Pediculus humanus) genome. Additionally, calling phased variants revealed that the Brueelia genome is more heterozygous (∼1%) then expected for a highly obligate and dispersal-limited parasite. We also assembled and annotated the mitochondrial genome and primary endosymbiont (Sodalis) genome from the individual louse, which showed evidence for heteroplasmy in the mitogenome and a reduced genome size in the endosymbiont compared to its free-living relative. Our study is a valuable demonstration of the capability to obtain high-quality genomes from individual small, nonmodel organisms. Applying this approach to other organisms could greatly increase our understanding of the diversity and evolution of individual genomes.
G3 (Bethesda). 2021 Feb 9;11(2):
[PMID: 33604673 ]
Mar Genomics. 2016 Dec;30:3-13
[PMID: 27184710 ]
Mol Ecol. 2021 Dec;30(23):5935-5948
[PMID: 33786900 ]
BMC Genomics. 2011 Aug 04;12:394
[PMID: 21813020 ]
Bioinformatics. 2011 Aug 1;27(15):2156-8
[PMID: 21653522 ]
Symbiosis. 2011 Nov;55(3):119-126
[PMID: 22448083 ]
Mol Phylogenet Evol. 2016 Jan;94(Pt B):737-751
[PMID: 26455895 ]
Int J Parasitol. 2018 Jul;48(8):641-648
[PMID: 29577890 ]
Genome Res. 2020 Sep;30(9):1291-1305
[PMID: 32801147 ]
Proc Biol Sci. 2014 Jan 08;281(1777):20132174
[PMID: 24403325 ]
Commun Biol. 2019 Nov 29;2:445
[PMID: 31815200 ]
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W435-9
[PMID: 16845043 ]
BMC Ecol Evol. 2021 Jun 2;21(1):108
[PMID: 34078265 ]
PeerJ. 2020 Mar 23;8:e8759
[PMID: 32231878 ]
Nat Rev Genet. 2020 Oct;21(10):597-614
[PMID: 32504078 ]
Bioinformatics. 2018 Mar 1;34(5):725-731
[PMID: 29069293 ]
Microorganisms. 2020 May 08;8(5):
[PMID: 32397333 ]
Nat Biotechnol. 2010 May;28(5):511-5
[PMID: 20436464 ]
Front Genet. 2019 May 07;10:426
[PMID: 31134132 ]
Nucleic Acids Res. 2019 Nov 18;47(20):10543-10552
[PMID: 31584075 ]
Mol Ecol. 2008 May;17(9):2208-18
[PMID: 18410291 ]
Nature. 2007 Jan 4;445(7123):82-5
[PMID: 17203060 ]
Parasite. 2011 Feb;18(1):13-9
[PMID: 21395201 ]
Genome Biol Evol. 2014 Jan;6(1):76-93
[PMID: 24407854 ]
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12168-73
[PMID: 20566863 ]
Gigascience. 2022 Aug 10;11:
[PMID: 35946988 ]
BMC Bioinformatics. 2011 Dec 22;12:491
[PMID: 22192575 ]
Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10
[PMID: 27137889 ]
Genes (Basel). 2019 Jan 18;10(1):
[PMID: 30669388 ]
Heredity (Edinb). 2006 Jan;96(1):63-8
[PMID: 16175192 ]
Heredity (Edinb). 2011 Feb;106(2):253-60
[PMID: 20606689 ]
Insect Mol Biol. 2019 Dec;28(6):739-758
[PMID: 31120160 ]
Genome Biol. 2020 Feb 7;21(1):30
[PMID: 32033565 ]
Evolution. 1990 Jul;44(4):942-951
[PMID: 28569037 ]
Bioinformatics. 2015 Oct 1;31(19):3210-2
[PMID: 26059717 ]
Gigascience. 2021 Feb 16;10(2):
[PMID: 33590861 ]
Genetics. 2010 Nov;186(3):983-95
[PMID: 20739713 ]
Genome Res. 2009 May;19(5):904-12
[PMID: 19336451 ]
Nat Biotechnol. 2019 May;37(5):540-546
[PMID: 30936562 ]
Clin Microbiol Infect. 2012 Apr;18(4):324-31
[PMID: 22429457 ]
Appl Environ Microbiol. 2016 May 16;82(11):3185-97
[PMID: 26994086 ]
Nucleic Acids Res. 2019 Jul 2;47(W1):W52-W58
[PMID: 31053848 ]
Genome Res. 2009 Sep;19(9):1639-45
[PMID: 19541911 ]
G3 (Bethesda). 2014 Sep 11;4(11):2189-95
[PMID: 25213693 ]
Nat Commun. 2020 Mar 18;11(1):1432
[PMID: 32188846 ]
Gigascience. 2021 May 21;10(5):
[PMID: 34018554 ]
Mol Ecol Resour. 2019 Jan;19(1):77-89
[PMID: 30118581 ]
Ecol Evol. 2018 Mar 25;8(8):4011-4018
[PMID: 29721275 ]
Nat Methods. 2020 Feb;17(2):155-158
[PMID: 31819265 ]
Bioinformatics. 2013 Apr 15;29(8):1072-5
[PMID: 23422339 ]
BMC Genomics. 2014 Aug 26;15:720
[PMID: 25159659 ]
Nucleic Acids Res. 2019 Jun 20;47(11):e63
[PMID: 30864657 ]
Bioinformatics. 2001 Sep;17(9):847-8
[PMID: 11590104 ]
Ecol Evol. 2020 Jul 13;10(16):8643-8651
[PMID: 32884647 ]
PLoS Genet. 2012;8(11):e1002990
[PMID: 23166503 ]
Gigascience. 2015 Aug 04;4:35
[PMID: 26244089 ]
Bioinformatics. 2011 Mar 15;27(6):764-70
[PMID: 21217122 ]
Mol Ecol Resour. 2022 Jul;22(5):1786-1802
[PMID: 35068060 ]
Microbiol Resour Announc. 2018 Nov 8;7(18):
[PMID: 30533782 ]
Bioinformatics. 2009 Aug 15;25(16):2078-9
[PMID: 19505943 ]
Front Microbiol. 2021 Jun 11;12:668644
[PMID: 34177846 ]
Ecol Lett. 2014 Dec;17(12):1602-12
[PMID: 25328085 ]
Commun Biol. 2022 Jul 8;5(1):677
[PMID: 35804150 ]
Eukaryot Cell. 2013 Apr;12(4):496-502
[PMID: 23376943 ]
Hum Mol Genet. 2018 Aug 1;27(R2):R234-R241
[PMID: 29767702 ]
Mol Ecol. 2022 Sep;31(18):4593-4606
[PMID: 35726520 ]
Genome Res. 2020 Jun;30(6):898-909
[PMID: 32540955 ]
Genome Biol. 2019 Nov 28;20(1):257
[PMID: 31779668 ]
Nature. 2011 Jul 13;475(7357):493-6
[PMID: 21753753 ]
BMC Bioinformatics. 2021 Jun 5;22(1):303
[PMID: 34090340 ]
Bioinformatics. 2014 Jul 15;30(14):2068-9
[PMID: 24642063 ]
J Mol Biol. 1990 Oct 5;215(3):403-10
[PMID: 2231712 ]
Animals
Humans
Phthiraptera
Sequence Analysis, DNA
Genome, Mitochondrial
Genome Size
DNA
High-Throughput Nucleotide Sequencing