Developing algae as a sustainable food source.

Crisandra J Diaz, Kai J Douglas, Kalisa Kang, Ashlynn L Kolarik, Rodeon Malinovski, Yasin Torres-Tiji, João V Molino, Amr Badary, Stephen P Mayfield
Author Information
  1. Crisandra J Diaz: Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States.
  2. Kai J Douglas: Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States.
  3. Kalisa Kang: Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States.
  4. Ashlynn L Kolarik: Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States.
  5. Rodeon Malinovski: Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States.
  6. Yasin Torres-Tiji: Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States.
  7. João V Molino: Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States.
  8. Amr Badary: Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States.
  9. Stephen P Mayfield: Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States.

Abstract

Current agricultural and food production practices are facing extreme stress, posed by climate change and an ever-increasing human population. The pressure to feed nearly 8 billion people while maintaining a minimal impact on the environment has prompted a movement toward new, more sustainable food sources. For thousands of years, both the macro (seaweed and kelp) and micro (unicellular) forms of algae have been cultivated as a food source. Algae have evolved to be highly efficient at resource utilization and have proven to be a viable source of nutritious biomass that could address many of the current food production issues. Particularly for microalgae, studies of their large-scale growth and cultivation come from the biofuel industry; however, this knowledge can be reasonably translated into the production of algae-based food products. The ability of algae to sequester CO lends to its sustainability by helping to reduce the carbon footprint of its production. Additionally, algae can be produced on non-arable land using non-potable water (including brackish or seawater), which allows them to complement rather than compete with traditional agriculture. Algae inherently have the desired qualities of a sustainable food source because they produce highly digestible proteins, lipids, and carbohydrates, and are rich in essential fatty acids, vitamins, and minerals. Although algae have yet to be fully domesticated as food sources, a variety of cultivation and breeding tools exist that can be built upon to allow for the increased productivity and enhanced nutritional and organoleptic qualities that will be required to bring algae to mainstream utilization. Here we will focus on microalgae and cyanobacteria to highlight the current advancements that will expand the variety of algae-based nutritional sources, as well as outline various challenges between current biomass production and large-scale economic algae production for the food market.

Keywords

References

  1. Life (Basel). 2020 Nov 20;10(11): [PMID: 33233548]
  2. Life (Basel). 2022 Jan 31;12(2): [PMID: 35207509]
  3. Nutrients. 2020 Jul 30;12(8): [PMID: 32751743]
  4. Curr Pharm Des. 2016;22(2):164-73 [PMID: 26561078]
  5. Plant J. 2015 May;82(3):523-531 [PMID: 25641390]
  6. Front Bioeng Biotechnol. 2015 Feb 11;2:90 [PMID: 25717470]
  7. Mar Biotechnol (NY). 2018 Apr;20(2):109-117 [PMID: 29330710]
  8. Bioresour Technol. 2020 Oct;313:123624 [PMID: 32593146]
  9. Physiol Plant. 2021 Oct;173(2):624-638 [PMID: 33963557]
  10. Glob Food Sec. 2017 Mar;12:31-37 [PMID: 28580238]
  11. Nutrients. 2018 Nov 04;10(11): [PMID: 30400385]
  12. Mutat Res. 1977 Jan;42(1):65-70 [PMID: 15216]
  13. Microb Cell Fact. 2018 Mar 5;17(1):36 [PMID: 29506528]
  14. Mar Drugs. 2018 Aug 16;16(8): [PMID: 30115823]
  15. Trends Biotechnol. 2003 May;21(5):210-6 [PMID: 12727382]
  16. Bioprocess Biosyst Eng. 2018 Sep;41(9):1355-1370 [PMID: 29948212]
  17. Front Bioeng Biotechnol. 2020 Sep 03;8:914 [PMID: 33014997]
  18. Front Bioeng Biotechnol. 2019 May 15;7:108 [PMID: 31157220]
  19. Appl Microbiol Biotechnol. 2011 Jul;91(1):31-46 [PMID: 21567179]
  20. Bioresour Technol. 2016 May;207:268-75 [PMID: 26894567]
  21. Biotechnol Adv. 2017 Sep;35(5):597-618 [PMID: 28511892]
  22. Sci Rep. 2016 Jun 13;6:27810 [PMID: 27291619]
  23. Philos Trans R Soc Lond B Biol Sci. 2010 Sep 27;365(1554):2991-3006 [PMID: 20713398]
  24. Front Plant Sci. 2020 Apr 15;11:372 [PMID: 32351517]
  25. Biotechnol Biofuels. 2018 Jun 28;11:183 [PMID: 29988300]
  26. Sci Rep. 2019 Sep 26;9(1):13935 [PMID: 31558732]
  27. Int J Food Sci Nutr. 2011 Dec;62(8):794-9 [PMID: 21574818]
  28. Nutrients. 2019 Apr 13;11(4): [PMID: 31013870]
  29. Curr Opin Biotechnol. 2013 Apr;24(2):169-77 [PMID: 23084075]
  30. Bioresour Technol. 2013 May;135:128-36 [PMID: 23265815]
  31. Annu Rev Plant Biol. 2019 Apr 29;70:667-697 [PMID: 30835493]
  32. Crit Rev Food Sci Nutr. 2020;60(17):2961-2989 [PMID: 31595777]
  33. Microorganisms. 2019 Sep 29;7(10): [PMID: 31569579]
  34. Biotechnol Adv. 2018 Jul - Aug;36(4):1238-1254 [PMID: 29673973]
  35. Crit Rev Food Sci Nutr. 2019;59(21):3538-3547 [PMID: 29999416]
  36. J Biosci Bioeng. 2006 Feb;101(2):87-96 [PMID: 16569602]
  37. Appl Physiol Nutr Metab. 2007 Aug;32(4):619-34 [PMID: 17622276]
  38. World J Microbiol Biotechnol. 2015 Jan;31(1):1-9 [PMID: 25388473]
  39. Front Bioeng Biotechnol. 2020 May 19;8:469 [PMID: 32509750]
  40. Enzyme Microb Technol. 2020 Oct;140:109619 [PMID: 32912679]
  41. Biomed Res Int. 2017;2017:4018562 [PMID: 28612024]
  42. Methods Mol Biol. 2022;2379:45-65 [PMID: 35188655]
  43. Curr Opin Biotechnol. 2017 Apr;44:27-34 [PMID: 27835795]
  44. Biochem Biophys Res Commun. 2011 Oct 14;414(1):1-4 [PMID: 21945931]
  45. Front Bioeng Biotechnol. 2015 Oct 19;3:164 [PMID: 26539434]
  46. Nutrients. 2022 Apr 13;14(8): [PMID: 35458176]
  47. Appetite. 2021 Apr 1;159:105058 [PMID: 33276014]
  48. Front Bioeng Biotechnol. 2020 Jul 23;8:610 [PMID: 32850686]
  49. Bioresour Technol. 2018 Nov;268:340-345 [PMID: 30096641]
  50. Front Bioeng Biotechnol. 2021 Dec 17;9:774143 [PMID: 34976972]
  51. Sci Rep. 2017 Apr 04;7:45471 [PMID: 28374798]
  52. Bioresour Technol. 2013 Sep;144:499-503 [PMID: 23896442]
  53. Animals (Basel). 2020 Sep 12;10(9): [PMID: 32932710]
  54. J Biotechnol. 2009 Jun 1;142(1):70-7 [PMID: 19480949]
  55. Annu Rev Nutr. 2003;23:171-201 [PMID: 12626691]
  56. Bioresour Technol. 2017 Dec;245(Pt A):162-170 [PMID: 28892686]
  57. Sci Rep. 2016 May 23;6:26327 [PMID: 27212384]
  58. Eukaryot Cell. 2014 Nov;13(11):1465-9 [PMID: 25239977]
  59. Cells. 2021 Feb 14;10(2): [PMID: 33673015]
  60. N Biotechnol. 2010 Nov 30;27(5):478-81 [PMID: 20478420]
  61. Microb Cell Fact. 2012 Jul 25;11:96 [PMID: 22830315]
  62. Methods Mol Biol. 2022;2377:143-157 [PMID: 34709615]
  63. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2087-91 [PMID: 2179948]
  64. Nutrients. 2014 Jan 27;6(2):466-88 [PMID: 24473231]
  65. Am J Clin Nutr. 2008 Aug;88(2):372-83 [PMID: 18689373]
  66. Environ Sci Technol. 2010 Mar 1;44(5):1813-9 [PMID: 20085253]
  67. Physiol Behav. 2012 Nov 5;107(4):502-4 [PMID: 22939762]
  68. Food Res Int. 2020 Nov;137:109341 [PMID: 33233049]
  69. Biosci Rep. 2019 Jan 11;39(1): [PMID: 30530569]
  70. Sci Rep. 2016 May 04;6:25209 [PMID: 27141848]
  71. Nutr Metab (Lond). 2012 Jul 20;9(1):67 [PMID: 22818257]
  72. Front Nutr. 2018 Jul 31;5:58 [PMID: 30109233]
  73. Mar Drugs. 2019 May 24;17(5): [PMID: 31137657]
  74. J Appl Phycol. 2017;29(2):949-982 [PMID: 28458464]
  75. Bioimpacts. 2012;2(2):83-9 [PMID: 23678445]
  76. Adv Exp Med Biol. 2021;1261:121-135 [PMID: 33783735]
  77. Nutrients. 2018 Sep 18;10(9): [PMID: 30231532]
  78. Foods. 2017 Apr 26;6(5): [PMID: 28445408]
  79. Biofuels. 2010 Sep;1(5):763-784 [PMID: 21833344]
  80. Biotechnol Biofuels. 2021 Jan 6;14(1):4 [PMID: 33407769]
  81. Plants (Basel). 2019 Dec 24;9(1): [PMID: 31878279]
  82. Biotechnol Biofuels. 2014 Apr 17;7:64 [PMID: 24739806]
  83. Science. 2014 Nov 28;346(6213):1258096 [PMID: 25430774]
  84. Biotechnol Biofuels. 2014 Jun 11;7:88 [PMID: 24959200]
  85. Bioresour Technol. 2015 May;184:73-81 [PMID: 25465788]
  86. Mol Biol Rep. 2022 Jul;49(7):7087-7100 [PMID: 35705772]
  87. Mol Biotechnol. 2019 Jun;61(6):461-468 [PMID: 30997667]
  88. Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21550-4 [PMID: 19995962]
  89. Front Bioeng Biotechnol. 2021 Feb 12;9:628597 [PMID: 33644020]
  90. J Biotechnol. 2016 Oct 20;236:71-7 [PMID: 27527395]
  91. J Biotechnol. 2021 Nov 10;340:47-56 [PMID: 34481001]
  92. Front Bioeng Biotechnol. 2020 Jun 12;8:483 [PMID: 32596215]
  93. Microb Cell Fact. 2022 May 28;21(1):103 [PMID: 35643551]
  94. World Health Organ Tech Rep Ser. 2007;(935):1-265, back cover [PMID: 18330140]
  95. Front Bioeng Biotechnol. 2013 Sep 26;1:7 [PMID: 25022311]
  96. Bioresour Technol. 2011 Jan;102(1):10-6 [PMID: 20615690]
  97. Mar Biotechnol (NY). 2015 Jun;17(3):245-51 [PMID: 25638493]
  98. Nutrients. 2020 Aug 20;12(9): [PMID: 32825362]
  99. Front Biosci (Elite Ed). 2018 Jan 1;10(2):254-275 [PMID: 28930617]
  100. Microbiol Mol Biol Rev. 2003 Mar;67(1):16-37, table of contents [PMID: 12626681]
  101. Biotechnol Adv. 2022 Sep;58:107885 [PMID: 34906670]
  102. Food Funct. 2017 Aug 1;8(8):2672-2685 [PMID: 28681866]
  103. Open Access Maced J Med Sci. 2018 Jan 10;6(1):176-180 [PMID: 29484021]
  104. Planta. 1981 Jan;151(1):26-32 [PMID: 24301666]
  105. Biotechnol Adv. 2020 Jul - Aug;41:107536 [PMID: 32194145]
  106. Nat Commun. 2021 Nov 19;12(1):6751 [PMID: 34799578]

Word Cloud

Created with Highcharts 10.0.0foodalgaeproductionsourcemicroalgaesustainablesourcescurrentcultivationcanwillAlgaehighlyutilizationbiomasslarge-scalealgae-basedqualitiesessentialvarietybreedingtoolsnutritionalcyanobacteriaCurrentagriculturalpracticesfacingextremestressposedclimatechangeever-increasinghumanpopulationpressurefeednearly8billionpeoplemaintainingminimalimpactenvironmentpromptedmovementtowardnewthousandsyearsmacroseaweedkelpmicrounicellularformscultivatedevolvedefficientresourceprovenviablenutritiousaddressmanyissuesParticularlystudiesgrowthcomebiofuelindustryhoweverknowledgereasonablytranslatedproductsabilitysequesterCOlendssustainabilityhelpingreducecarbonfootprintAdditionallyproducednon-arablelandusingnon-potablewaterincludingbrackishseawaterallowscomplementrathercompetetraditionalagricultureinherentlydesiredproducedigestibleproteinslipidscarbohydratesrichfattyacidsvitaminsmineralsAlthoughyetfullydomesticatedexistbuiltuponallowincreasedproductivityenhancedorganolepticrequiredbringmainstreamfocushighlightadvancementsexpandwelloutlinevariouschallengeseconomicmarketDevelopingbiotechnologynutrientgenetic

Similar Articles

Cited By