Low frequency repetitive transcranial magnetic stimulation promotes plasticity of the visual cortex in adult amblyopic rats.

Jing Zheng, Wenqiu Zhang, Longqian Liu, Maurice Keng Hung Yap
Author Information
  1. Jing Zheng: Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.
  2. Wenqiu Zhang: Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.
  3. Longqian Liu: Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.
  4. Maurice Keng Hung Yap: School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China.

Abstract

The decline of visual plasticity restricts the recovery of visual functions in adult amblyopia. Repetitive transcranial magnetic stimulation (rTMS) has been shown to be effective in treating adult amblyopia. However, the underlying mechanisms of rTMS on visual cortex plasticity remain unclear. In this study, we found that low-frequency rTMS reinstated the amplitude of visual evoked potentials, but did not influence the impaired depth perception of amblyopic rats. Furthermore, the expression of synaptic plasticity genes and the number of dendritic spines were significantly higher in amblyopic rats which received rTMS when compared with amblyopic rats which received sham stimulation, with reduced level of inhibition and perineuronal nets in visual cortex, as observed molecular and histological investigations. The results provide further evidence that rTMS enhances functional recovery and visual plasticity in an adult amblyopic animal model.

Keywords

References

  1. Neuron. 2003 Jun 19;38(6):977-85 [PMID: 12818182]
  2. Neuron. 2008 Mar 27;57(6):858-71 [PMID: 18367087]
  3. Curr Opin Neurobiol. 2006 Aug;16(4):451-9 [PMID: 16837188]
  4. J Neurosci. 2004 Mar 31;24(13):3379-85 [PMID: 15056717]
  5. J Physiol. 2001 May 15;533(Pt 1):281-97 [PMID: 11351035]
  6. Exp Brain Res. 2009 Jan;192(3):335-41 [PMID: 18668231]
  7. Neuropsychiatr Dis Treat. 2021 Jul 02;17:2151-2161 [PMID: 34239303]
  8. Am J Hum Genet. 2017 Nov 2;101(5):768-788 [PMID: 29100089]
  9. Proc Natl Acad Sci U S A. 2006 May 30;103(22):8517-22 [PMID: 16709670]
  10. Nat Commun. 2017 May 23;8:15488 [PMID: 28534484]
  11. Front Cell Neurosci. 2020 Jul 17;14:213 [PMID: 32765222]
  12. Nat Neurosci. 2018 Feb;21(2):174-187 [PMID: 29311747]
  13. Matrix Biol. 2013 Aug 8;32(6):352-63 [PMID: 23597636]
  14. Behav Brain Res. 2018 Nov 1;353:129-136 [PMID: 30003977]
  15. Sleep Med Rev. 2018 Aug;40:69-78 [PMID: 29153862]
  16. Neural Plast. 2011;2011:391763 [PMID: 21826276]
  17. Brain Stimul. 2018 Jul - Aug;11(4):797-805 [PMID: 29519725]
  18. J Neurosci. 1982 Jan;2(1):32-48 [PMID: 7054394]
  19. Nat Rev Neurosci. 2003 Jun;4(6):496-505 [PMID: 12778121]
  20. Neuropharmacology. 2018 Jan;128:207-220 [PMID: 29031852]
  21. Front Integr Neurosci. 2018 Feb 02;12:3 [PMID: 29456495]
  22. Eur J Neurosci. 2006 Jul;24(2):564-72 [PMID: 16903858]
  23. Nat Rev Neurosci. 2005 Nov;6(11):877-88 [PMID: 16261181]
  24. Eur J Neurosci. 2010 Jun;31(12):2185-92 [PMID: 20550570]
  25. Science. 2008 Apr 18;320(5874):385-8 [PMID: 18420937]
  26. Clin Neurophysiol. 2006 Dec;117(12):2584-96 [PMID: 16890483]
  27. Mov Disord. 2017 Jul;32(7):1035-1046 [PMID: 28394013]
  28. J Neurosci Methods. 1980 Dec;3(2):129-49 [PMID: 6110810]
  29. Mol Cell Neurosci. 2008 Dec;39(4):519-28 [PMID: 18786638]
  30. Front Behav Neurosci. 2017 Dec 11;11:240 [PMID: 29321734]
  31. Brain Stimul. 2021 Jul-Aug;14(4):884-894 [PMID: 34029768]
  32. Philos Trans R Soc Lond B Biol Sci. 2017 Mar 5;372(1715): [PMID: 28093553]
  33. Front Mol Neurosci. 2016 Jan 05;8:78 [PMID: 26778955]
  34. Brain Stimul. 2013 Nov;6(6):860-7 [PMID: 23664756]
  35. Curr Eye Res. 2013 Oct;38(10):1083-94 [PMID: 23718120]
  36. Science. 2002 Nov 8;298(5596):1248-51 [PMID: 12424383]
  37. Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):1150-5 [PMID: 24395770]
  38. Front Cell Neurosci. 2018 Feb 28;12:46 [PMID: 29541022]
  39. Strabismus. 2018 Dec;26(4):168-183 [PMID: 30059649]
  40. Neuron. 2007 Jul 19;55(2):187-99 [PMID: 17640522]
  41. Dev Neurobiol. 2016 Jan;76(1):19-33 [PMID: 25892203]
  42. J Neurosci. 2020 Nov 11;40(46):8883-8899 [PMID: 33051348]
  43. Exp Gerontol. 2014 Oct;58:256-68 [PMID: 25172625]
  44. Invest Ophthalmol Vis Sci. 2022 Jan 3;63(1):6 [PMID: 34989762]
  45. Philos Trans R Soc Lond B Biol Sci. 2016 Jun 19;371(1697): [PMID: 27269598]
  46. Prog Retin Eye Res. 2013 Mar;33:67-84 [PMID: 23201436]
  47. Neuron. 2008 Jun 12;58(5):673-80 [PMID: 18549780]
  48. J Neuroophthalmol. 2020 Jun;40(2):185-192 [PMID: 31453915]
  49. Front Neural Circuits. 2016 Mar 30;10:22 [PMID: 27065812]
  50. Physiol Behav. 2015 Aug 1;147:334-41 [PMID: 25982087]
  51. J Ophthalmol. 2020 Jul 07;2020:1485425 [PMID: 32724667]
  52. Sci Rep. 2018 Jan 9;8(1):219 [PMID: 29317733]
  53. Int J Ophthalmol. 2019 May 18;12(5):820-825 [PMID: 31131243]
  54. J AAPOS. 2011 Oct;15(5):455-61 [PMID: 22108357]
  55. Neurorehabil Neural Repair. 2013 Oct;27(8):760-9 [PMID: 23774122]
  56. J Neurol Sci. 1995 Feb;128(2):143-50 [PMID: 7738590]
  57. Curr Biol. 2008 Jul 22;18(14):1067-71 [PMID: 18635353]
  58. Exp Brain Res. 2009 Dec;199(3-4):411-21 [PMID: 19701632]
  59. Behav Brain Res. 2019 Sep 16;370:111941 [PMID: 31078617]
  60. J Neurosci. 2010 Jan 6;30(1):361-71 [PMID: 20053917]
  61. Surv Ophthalmol. 2005 Mar-Apr;50(2):123-66 [PMID: 15749306]
  62. Front Neurosci. 2020 Jun 16;14:558 [PMID: 32612497]
  63. Vis Neurosci. 2018 Jan;35:E014 [PMID: 29905116]

Word Cloud

Created with Highcharts 10.0.0visualplasticityrTMSamblyopicadultstimulationratsamblyopiatranscranialmagneticcortexrecoveryreceivedperineuronalnetsrepetitivedeclinerestrictsfunctionsRepetitiveshowneffectivetreatingHoweverunderlyingmechanismsremainunclearstudyfoundlow-frequencyreinstatedamplitudeevokedpotentialsinfluenceimpaireddepthperceptionFurthermoreexpressionsynapticgenesnumberdendriticspinessignificantlyhighercomparedshamreducedlevelinhibitionobservedmolecularhistologicalinvestigationsresultsprovideevidenceenhancesfunctionalanimalmodelLowfrequencypromotesGABA

Similar Articles

Cited By