Development of a charged model of the SARS-CoV-2 viral surface.

James E Parker, Roberto A Rodriguez
Author Information
  1. James E Parker: General Dynamics Information Technology, 4141 Petroleum Road, JBSA Fort Sam Houston, TX, 78234-2644, United States. Electronic address: james.parker.28.ctr@us.af.mil.
  2. Roberto A Rodriguez: General Dynamics Information Technology, 4141 Petroleum Road, JBSA Fort Sam Houston, TX, 78234-2644, United States. Electronic address: roberto.rodriguez.36.ctr@us.af.mil.

Abstract

A recent study provided experimental evidence of inactivation of viral activity after radio-frequency (RF) exposures in the 6-12 GHz band that was hypothesized to be caused by vibrations of an acoustic dipole mode in the virus that excited the viral membrane to failure. Here, we develop an atomic-scale molecular dynamics (MD) model of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral surface to estimate the electric fields necessary to rupture the viral membrane via dipole shaking of the virus. We computed the absorption spectrum of the system via unbiased MD simulations and found no particular strong absorption in the GHz band. We investigated the mechanical resiliency of the viral membrane by introducing uniaxial strains in the system and observed no pore formation in the membrane for strains up to 50%. Because the computed absorption spectrum was found to be essentially flat, and the strain required to break the viral membrane was >0.5, the field strength associated with rupture of the virus was greater than the dielectric breakdown value of air. Thus, RF disinfection of enveloped viruses would occur only once sufficient heat was transferred to the virus via a thermal mechanism and not by direct action (shaking) of the RF field oscillations on the viral membrane.

Keywords

References

  1. J Chem Theory Comput. 2019 Jan 8;15(1):775-786 [PMID: 30525595]
  2. Proteins. 2020 May;88(5):637-642 [PMID: 31693199]
  3. Structure. 2006 Mar;14(3):437-49 [PMID: 16531228]
  4. Electrophoresis. 2020 Jul;41(13-14):1137-1151 [PMID: 32469436]
  5. Protein Cell. 2017 Mar;8(3):219-224 [PMID: 28044277]
  6. J Comput Chem. 2005 Dec;26(16):1781-802 [PMID: 16222654]
  7. Biophys J. 2021 Mar 16;120(6):1097-1104 [PMID: 33253634]
  8. Sci Rep. 2015 Dec 09;5:18030 [PMID: 26647655]
  9. Future Virol. 2019 Apr;14(4):275-286 [PMID: 32201500]
  10. J Virol. 2006 Aug;80(16):7918-28 [PMID: 16873249]
  11. Adv Virus Res. 2016;96:1-27 [PMID: 27712621]
  12. J Biomech. 2011 Jul 28;44(11):2053-8 [PMID: 21658696]
  13. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  14. PLoS One. 2007 Sep 12;2(9):e880 [PMID: 17849009]
  15. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  16. J Phys Chem B. 2020 Aug 20;124(33):7128-7137 [PMID: 32559081]
  17. J Phys Chem B. 2017 Apr 13;121(14):3024-3031 [PMID: 28319390]
  18. J Comput Chem. 2008 Aug;29(11):1859-65 [PMID: 18351591]
  19. Antiviral Res. 2014 Mar;103:39-50 [PMID: 24418573]
  20. Biophys J. 2009 Jul 8;97(1):50-8 [PMID: 19580743]
  21. Annu Rev Biophys. 2019 May 6;48:63-91 [PMID: 30786231]
  22. Appl Environ Microbiol. 2021 Sep 10;87(19):e0031421 [PMID: 34288702]
  23. Am J Infect Control. 2020 Oct;48(10):1273-1275 [PMID: 32763344]
  24. J Struct Biol. 2011 Apr;174(1):11-22 [PMID: 21130884]
  25. Virology. 2019 Nov;537:198-207 [PMID: 31505321]
  26. Biochem Biophys Res Commun. 2021 Jan 29;538:54-62 [PMID: 33039147]
  27. Nat Methods. 2017 Jan;14(1):71-73 [PMID: 27819658]
  28. J Comput Chem. 2014 Oct 15;35(27):1997-2004 [PMID: 25130509]
  29. J Chem Theory Comput. 2015 Jul 14;11(7):3466-77 [PMID: 26575780]
  30. Nature. 2020 Mar;579(7798):265-269 [PMID: 32015508]

MeSH Term

SARS-CoV-2
Molecular Dynamics Simulation
Surface Properties
Viral Envelope
Disinfection
Absorption, Radiation
Radio Waves

Word Cloud

Created with Highcharts 10.0.0viralmembranevirusRFviaabsorptioninactivationbanddipoledynamicsMDmodelSARS-CoV-2surfaceruptureshakingcomputedspectrumsystemfoundstrainsfieldrecentstudyprovidedexperimentalevidenceactivityradio-frequencyexposures6-12 GHzhypothesizedcausedvibrationsacousticmodeexcitedfailuredevelopatomic-scalemolecularsevereacuterespiratorysyndromecoronavirus2estimateelectricfieldsnecessaryunbiasedsimulationsparticularstrongGHzinvestigatedmechanicalresiliencyintroducinguniaxialobservedporeformation50%essentiallyflatstrainrequiredbreak>05strengthassociatedgreaterdielectricbreakdownvalueairThusdisinfectionenvelopedvirusesoccursufficientheattransferredthermalmechanismdirectactionoscillationsDevelopmentchargedCOVID-19MolecularRadiofrequencyexposureSARSViral

Similar Articles

Cited By