Bacterial communities of Antarctic lichens explored by gDNA and cDNA 16S rRNA gene amplicon sequencing.

Aleksandra Woltyńska, Jan Gawor, Maria A Olech, Dorota Górniak, Jakub Grzesiak
Author Information
  1. Aleksandra Woltyńska: Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland.
  2. Jan Gawor: Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland.
  3. Maria A Olech: Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387 Krakow, Poland.
  4. Dorota Górniak: Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719 Olsztyn, Poland.
  5. Jakub Grzesiak: Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland. ORCID

Abstract

Recently, lichens came once more into the scientific spotlight due to their unique relations with prokaryotes. Several temperate region lichen species have been thoroughly explored in this regard yet, the information on Antarctic lichens and their associated bacteriobiomes is somewhat lacking. In this paper, we assessed the phylogenetic structure of the whole and active fractions of bacterial communities housed by Antarctic lichens growing in different environmental conditions by targeted 16S rRNA gene amplicon sequencing. Bacterial communities associated with lichens procured from a nitrogen enriched site were very distinct from the communities isolated from lichens of a nitrogen depleted site. The former were characterized by substantial contributions of Bacteroidetes phylum members and the elusive Armatimonadetes. At the nutrient-poor site the lichen-associated bacteriobiome structure was unique for each lichen species, with chlorolichens being occupied largely by Proteobacteria. Lichen species with a pronounced discrepancy in diversity between the whole and active fractions of their bacterial communities had the widest ecological amplitude, hinting that the nonactive part of the community is a reservoir of latent stress coping mechanisms. This is the first investigation to make use of targeted metatranscriptomics to infer the bacterial biodiversity in Antarctic lichens.

Keywords

References

  1. J Biotechnol. 2016 Apr 10;223:50-1 [PMID: 26924242]
  2. ISME J. 2015 Feb;9(2):412-24 [PMID: 25072413]
  3. Phytomedicine. 2011 Nov 15;18(14):1285-90 [PMID: 21802926]
  4. Front Microbiol. 2016 Feb 18;7:180 [PMID: 26925047]
  5. Front Microbiol. 2021 Mar 30;12:623839 [PMID: 33859626]
  6. Front Microbiol. 2016 May 31;7:744 [PMID: 27303369]
  7. New Phytol. 2013 Jan;197(1):264-275 [PMID: 23110612]
  8. J Fungi (Basel). 2022 Aug 03;8(8): [PMID: 36012805]
  9. Ann Bot. 2007 May;99(5):987-1001 [PMID: 17353205]
  10. J Appl Microbiol. 2006 Nov;101(5):1076-86 [PMID: 17040231]
  11. Sci Total Environ. 2020 Apr 20;714:136714 [PMID: 31978775]
  12. Syst Appl Microbiol. 2018 Jul;41(4):279-290 [PMID: 29475572]
  13. J Proteome Res. 2017 Jun 2;16(6):2160-2173 [PMID: 28290203]
  14. Curr Protoc Mol Biol. 2001 Nov;Chapter 2:Unit 2.4 [PMID: 18265184]
  15. World J Microbiol Biotechnol. 2016 Apr;32(4):68 [PMID: 26931608]
  16. Microbiome. 2017 Jul 19;5(1):82 [PMID: 28724401]
  17. Z Naturforsch C J Biosci. 2010 Jan-Feb;65(1-2):34-8 [PMID: 20355318]
  18. Curr Biol. 2019 Feb 4;29(3):476-483.e5 [PMID: 30661799]
  19. FEMS Microbiol Lett. 2020 Mar 1;367(5): [PMID: 32037451]
  20. Nucleic Acids Res. 2013 Jan 7;41(1):e1 [PMID: 22933715]
  21. Int J Syst Evol Microbiol. 2017 May;67(5):1613-1617 [PMID: 28005526]
  22. ISME J. 2009 Sep;3(9):1105-15 [PMID: 19554038]
  23. PeerJ. 2018 Jul 17;6:e5208 [PMID: 30038864]
  24. Philos Trans A Math Phys Eng Sci. 2020 Oct 30;378(2183):20190315 [PMID: 32981429]
  25. New Phytol. 2020 Sep;227(5):1281-1283 [PMID: 32484275]
  26. J Biotechnol. 2016 Jun 10;227:19-20 [PMID: 27063139]
  27. Front Microbiol. 2018 Nov 19;9:2775 [PMID: 30510549]
  28. Front Microbiol. 2015 Jun 22;6:620 [PMID: 26157431]
  29. ISME J. 2019 Feb;13(2):547-556 [PMID: 30310167]
  30. Biol Rev Camb Philos Soc. 2017 Aug;92(3):1720-1738 [PMID: 27730713]
  31. Planta. 2003 May;217(1):41-8 [PMID: 12721847]
  32. Physiol Plant. 2002 Aug;115(4):479-486 [PMID: 12121453]
  33. New Phytol. 2011 Aug;191(3):795-805 [PMID: 21534972]
  34. Microorganisms. 2021 Mar 15;9(3): [PMID: 33804278]
  35. Curr Microbiol. 2020 Oct;77(10):2940-2952 [PMID: 32681312]

MeSH Term

Lichens
RNA, Ribosomal, 16S
DNA, Complementary
Genes, rRNA
Phylogeny
Bacteria
Antarctic Regions

Chemicals

RNA, Ribosomal, 16S
DNA, Complementary

Word Cloud

Created with Highcharts 10.0.0lichenscommunitiesAntarcticbacteriallichenspeciestargetedsiteuniqueexploredassociatedstructurewholeactivefractions16SrRNAgeneampliconsequencingBacterialnitrogendiversitymetatranscriptomicsRecentlycamescientificspotlightduerelationsprokaryotesSeveraltemperateregionthoroughlyregardyetinformationbacteriobiomessomewhatlackingpaperassessedphylogenetichousedgrowingdifferentenvironmentalconditionsprocuredenricheddistinctisolateddepletedformercharacterizedsubstantialcontributionsBacteroidetesphylummemberselusiveArmatimonadetesnutrient-poorlichen-associatedbacteriobiomechlorolichensoccupiedlargelyProteobacteriaLichenpronounceddiscrepancywidestecologicalamplitudehintingnonactivepartcommunityreservoirlatentstresscopingmechanismsfirstinvestigationmakeuseinferbiodiversitygDNAcDNAUsneaholobiontoperationaltaxonomicunitspolarregions

Similar Articles

Cited By (3)