Potential targets and mechanisms of photobiomodulation for spinal cord injury.

Cheng Ju, Yang-Guang Ma, Xiao-Shuang Zuo, Xuan-Kang Wang, Zhi-Wen Song, Zhi-Hao Zhang, Zhi-Jie Zhu, Xin Li, Zhuo-Wen Liang, Tan Ding, Zhe Wang, Xue-Yu Hu
Author Information
  1. Cheng Ju: Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
  2. Yang-Guang Ma: Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
  3. Xiao-Shuang Zuo: Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
  4. Xuan-Kang Wang: Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
  5. Zhi-Wen Song: Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
  6. Zhi-Hao Zhang: Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
  7. Zhi-Jie Zhu: Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
  8. Xin Li: Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
  9. Zhuo-Wen Liang: Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
  10. Tan Ding: Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
  11. Zhe Wang: Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
  12. Xue-Yu Hu: Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.

Abstract

As a classic noninvasive physiotherapy, photobiomodulation, also known as low-level laser therapy, is widely used for the treatment of many diseases and has anti-inflammatory and tissue repair effects. Photobiomodulation has been shown to promote spinal cord injury repair. In our previous study, we found that 810 nm low-level laser therapy reduced the M1 polarization of macrophages and promoted motor function recovery. However, the mechanism underlying this inhibitory effect is not clear. In recent years, transcriptome sequencing analysis has played a critical role in elucidating the progression of diseases. Therefore, in this study, we performed M1 polarization on induced mouse bone marrow macrophages and applied low-level laser therapy. Our sequencing results showed the differential gene expression profile of photobiomodulation regulating macrophage polarization. We analyzed these genes using gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Networks of protein-protein interactions and competing RNA endogenous networks were constructed. We found that photobiomodulation inhibited STAT3 expression through increasing the expression of miR-330-5p, and that miR-330-5p binding to STAT3 inhibited STAT3 expression. Inducible nitric oxide synthase showed trends in changes similar to the changes in STAT3 expression. Finally, we treated a mouse model of spinal cord injury using photobiomodulation and confirmed that photobiomodulation reduced inducible nitric oxide synthase and STAT3 expression and promoted motor function recovery in spinal cord injury mice. These findings suggest that STAT3 may be a potential target of photobiomodulation, and the miR-330-5p/STAT3 pathway is a possible mechanism by which photobiomodulation has its biological effects.

Keywords

References

  1. Med Res Rev. 2022 Mar;42(2):850-896 [PMID: 34783046]
  2. Nat Commun. 2022 Jun 2;13(1):3072 [PMID: 35654768]
  3. Cancer Cell Int. 2018 Sep 18;18:141 [PMID: 30250399]
  4. Sci Rep. 2017 Apr 4;7(1):620 [PMID: 28377600]
  5. Trends Cell Biol. 2020 Mar;30(3):226-240 [PMID: 31973951]
  6. Spinal Cord. 2006 Mar;44(3):182-7 [PMID: 16130019]
  7. Proc Natl Acad Sci U S A. 2021 Jun 22;118(25): [PMID: 34155144]
  8. Front Cell Dev Biol. 2021 Feb 19;9:604038 [PMID: 33681194]
  9. Nat Struct Mol Biol. 2006 Dec;13(12):1097-101 [PMID: 17099701]
  10. J Exp Clin Cancer Res. 2020 May 27;39(1):94 [PMID: 32460831]
  11. J Cell Mol Med. 2020 Jan;24(1):476-487 [PMID: 31667932]
  12. Theranostics. 2022 May 9;12(8):3896-3910 [PMID: 35664078]
  13. Sci Rep. 2022 Aug 16;12(1):13892 [PMID: 35974016]
  14. Osteoarthritis Cartilage. 2022 Feb;30(2):216-225 [PMID: 34774787]
  15. Cardiovasc Drugs Ther. 2021 Aug;35(4):691-705 [PMID: 33137205]
  16. Lasers Med Sci. 2022 Feb;37(1):259-267 [PMID: 33389267]
  17. Antioxidants (Basel). 2022 May 17;11(5): [PMID: 35624846]
  18. J Neurotrauma. 2019 Dec 15;36(24):3394-3409 [PMID: 31232175]
  19. J Biochem Mol Toxicol. 2021 Feb;35(2):e22644 [PMID: 33049095]
  20. J Neurotrauma. 2006 Nov;23(11):1654-70 [PMID: 17115911]
  21. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  22. Neural Regen Res. 2021 Nov;16(11):2316-2323 [PMID: 33818518]
  23. J Exp Med. 2005 Jul 4;202(1):145-56 [PMID: 15998793]
  24. Nat Rev Cancer. 2021 Jul;21(7):446-460 [PMID: 33953369]
  25. NPJ Regen Med. 2021 Nov 25;6(1):81 [PMID: 34824291]
  26. Front Immunol. 2021 Oct 29;12:761890 [PMID: 34777377]
  27. Nat Rev Genet. 2010 Sep;11(9):597-610 [PMID: 20661255]
  28. Nucleic Acids Res. 2021 Jan 8;49(D1):D325-D334 [PMID: 33290552]
  29. Neural Plast. 2013;2013:945034 [PMID: 24288627]
  30. Biomed Pharmacother. 2019 Jul;115:108912 [PMID: 31048188]
  31. Oxid Med Cell Longev. 2022 May 16;2022:8652741 [PMID: 35615581]
  32. Cell Death Dis. 2022 Jun 7;13(6):535 [PMID: 35672285]
  33. Nucleic Acids Res. 2021 Jan 8;49(D1):D605-D612 [PMID: 33237311]
  34. J Neurotrauma. 2006 May;23(5):635-59 [PMID: 16689667]
  35. Neural Regen Res. 2021 Jun;16(6):1177-1185 [PMID: 33269767]
  36. J Orthop Surg Res. 2021 Jul 7;16(1):440 [PMID: 34233701]
  37. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  38. Cell Mol Gastroenterol Hepatol. 2022;13(2):425-440 [PMID: 34563711]
  39. Cells. 2020 Nov 03;9(11): [PMID: 33153044]
  40. Int J Pharm. 2022 Jun 25;622:121874 [PMID: 35636630]
  41. Pharmacol Ther. 2022 Oct;238:108176 [PMID: 35346728]
  42. Mol Cell. 2018 Aug 2;71(3):428-442 [PMID: 30057200]
  43. J Mol Neurosci. 2021 Jun;71(6):1290-1300 [PMID: 33417168]
  44. Nat Rev Mol Cell Biol. 2020 Aug;21(8):475-490 [PMID: 32366901]
  45. J Neuroinflammation. 2017 Oct 25;14(1):207 [PMID: 29070054]
  46. Front Immunol. 2022 Feb 10;13:822303 [PMID: 35222400]
  47. Front Immunol. 2022 Mar 17;13:816952 [PMID: 35371065]
  48. Front Nutr. 2022 May 12;9:879028 [PMID: 35634407]
  49. Front Immunol. 2020 Jan 27;10:3087 [PMID: 32047494]
  50. Cancer Lett. 2019 Apr 1;446:49-61 [PMID: 30639194]
  51. Life Sci. 2020 Dec 15;263:118572 [PMID: 33065147]
  52. Redox Biol. 2022 Jun;52:102295 [PMID: 35339825]
  53. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  54. Nat Rev Neurosci. 2022 Jul;23(7):411-427 [PMID: 35505254]
  55. J Cell Physiol. 2019 Apr;234(4):5134-5142 [PMID: 30187491]
  56. Brain Res. 2015 Sep 4;1619:1-11 [PMID: 25578260]
  57. EMBO J. 2019 Aug 15;38(16):e100836 [PMID: 31343080]
  58. Laser Ther. 2017 Sep 30;26(3):189-193 [PMID: 29133966]

Word Cloud

Created with Highcharts 10.0.0photobiomodulationSTAT3expressionspinalcordinjurylow-levellasertherapypolarizationfunctionmiR-330-5pdiseasesrepaireffectsstudyfoundreducedM1macrophagespromotedmotorrecoverymechanismsequencingmouseshowedgenemacrophageusingcompetingRNAendogenousinhibitednitricoxidesynthasechangespathwayclassicnoninvasivephysiotherapyalsoknownwidelyusedtreatmentmanyanti-inflammatorytissuePhotobiomodulationshownpromoteprevious810nmHoweverunderlyinginhibitoryeffectclearrecentyearstranscriptomeanalysisplayedcriticalroleelucidatingprogressionThereforeperformedinducedbonemarrowappliedresultsdifferentialprofileregulatinganalyzedgenesontologyKyotoEncyclopediaGenesGenomesenrichmentanalysesNetworksprotein-proteininteractionsnetworksconstructedincreasingbindingInducibletrendssimilarFinallytreatedmodelconfirmedinduciblemicefindingssuggestmaypotentialtargetmiR-330-5p/STAT3possiblebiologicalPotentialtargetsmechanismsRNA-seqinflammatoryneurological

Similar Articles

Cited By