Circulating triglycerides are associated with human adipose tissue DNA methylation of genes linked to metabolic disease.

Tina Rönn, Alexander Perfilyev, Josefine Jönsson, Karl-Fredrik Eriksson, Sine W Jørgensen, Charlotte Brøns, Linn Gillberg, Allan Vaag, Elisabet Stener-Victorin, Charlotte Ling
Author Information
  1. Tina Rönn: Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 205 02 Malmö, Sweden. ORCID
  2. Alexander Perfilyev: Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 205 02 Malmö, Sweden.
  3. Josefine Jönsson: Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 205 02 Malmö, Sweden.
  4. Karl-Fredrik Eriksson: Department of Clinical Sciences, Vascular Diseases, Lund University, 205 02 Malmö, Sweden.
  5. Sine W Jørgensen: Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark.
  6. Charlotte Brøns: Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark.
  7. Linn Gillberg: Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
  8. Allan Vaag: Steno Diabetes Center Copenhagen, DK-2820, Gentofte, Denmark.
  9. Elisabet Stener-Victorin: Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
  10. Charlotte Ling: Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 205 02 Malmö, Sweden.

Abstract

Dysregulation of circulating lipids is a central element for the metabolic syndrome. However, it is not well established whether human subcutaneous adipose tissue is affected by or affect circulating lipids through epigenetic mechanisms. Hence, our aim was to investigate the association between circulating lipids and DNA methylation levels in human adipose tissue. DNA methylation and gene expression were analysed genome-wide in subcutaneous adipose tissue from two different cohorts, including 85 men and 93 women, respectively. Associations between DNA methylation and circulating levels of triglycerides, low-density lipoprotein, high-density lipoprotein and total cholesterol were analysed. Causal mediation analyses tested if adipose tissue DNA methylation mediates the effects of triglycerides on gene expression or insulin resistance. We found 115 novel associations between triglycerides and adipose tissue DNA methylation, e.g. in the promoter of RFS1, ARID2 and HOXA5 in the male cohort (P ≤ 1.1 × 10-7), and 63 associations, e.g. within the gene body of PTPRN2 and COL6A3 in the female cohort. We further connected these findings to altered mRNA expression levels in adipose tissue (e.g. HOXA5, IL11 and FAM45B). Interestingly, there was no overlap between methylation sites associated with triglycerides in men and the sites found in women, which points towards sex-specific effects of triglycerides on the epigenome. Finally, a causal mediation analysis provided support for adipose tissue DNA methylation as a partial mediating factor between circulating triglycerides and insulin resistance. This study identified novel epigenetic alterations in adipose tissue associated with circulating lipids. Identified epigenetic changes seem to mediate effects of triglycerides on insulin resistance.

References

  1. Bioinformatics. 2013 Jan 15;29(2):189-96 [PMID: 23175756]
  2. Circulation. 2019 Aug 20;140(8):645-657 [PMID: 31424985]
  3. Int J Obes (Lond). 2016 Jun;40(6):929-37 [PMID: 26980478]
  4. Mol Metab. 2016 Nov 16;6(1):86-100 [PMID: 28123940]
  5. Biomed Rep. 2013 Jul;1(4):654-658 [PMID: 24649004]
  6. J Clin Endocrinol Metab. 2010 Feb;95(2):810-9 [PMID: 20016048]
  7. Genome Biol. 2017 Jan 27;18(1):19 [PMID: 28129774]
  8. Cell Metab. 2019 May 7;29(5):1028-1044 [PMID: 30982733]
  9. Sci Transl Med. 2020 Sep 16;12(561): [PMID: 32938793]
  10. BMC Bioinformatics. 2010 Nov 30;11:587 [PMID: 21118553]
  11. BMC Bioinformatics. 2015 Mar 21;16:95 [PMID: 25887114]
  12. EBioMedicine. 2019 Sep;47:341-351 [PMID: 31439477]
  13. Genome Med. 2022 Jul 18;14(1):75 [PMID: 35843982]
  14. Cardiovasc Diabetol. 2018 Apr 25;17(1):61 [PMID: 29695241]
  15. Cell Death Dis. 2018 Oct 22;9(11):1079 [PMID: 30348983]
  16. Nat Genet. 2016 Oct;48(10):1151-1161 [PMID: 27618447]
  17. Biostatistics. 2007 Jan;8(1):118-27 [PMID: 16632515]
  18. Adv Exp Med Biol. 2020;1239:381-389 [PMID: 32451867]
  19. Biomed Rep. 2014 Sep;2(5):633-636 [PMID: 25054002]
  20. Genome Biol. 2014 Dec 03;15(12):522 [PMID: 25517766]
  21. Nat Rev Endocrinol. 2021 Jan;17(1):47-66 [PMID: 33173188]
  22. J Biol Chem. 2013 Apr 26;288(17):11973-87 [PMID: 23476019]
  23. Diabetologia. 2016 Apr;59(4):799-812 [PMID: 26750116]
  24. Diabetes. 2020 Nov;69(11):2503-2517 [PMID: 32816961]
  25. Cells. 2020 Feb 02;9(2): [PMID: 32024237]
  26. Diabetologia. 2015 Aug;58(8):1877-86 [PMID: 26024738]
  27. PLoS One. 2010 Jun 09;5(6):e11033 [PMID: 20543949]
  28. Hum Mol Genet. 2015 Jul 1;24(13):3792-813 [PMID: 25861810]
  29. Mol Cell Biol. 2006 Sep;26(17):6372-80 [PMID: 16914723]
  30. J Clin Med. 2019 Jan 13;8(1): [PMID: 30642114]
  31. Nat Genet. 2013 Nov;45(11):1274-1283 [PMID: 24097068]
  32. Nat Commun. 2021 Jun 28;12(1):3987 [PMID: 34183656]
  33. Curr Diab Rep. 2018 Jul 30;18(9):69 [PMID: 30058013]
  34. Clin Epigenetics. 2015 May 14;7:54 [PMID: 26015811]
  35. Clin Epigenetics. 2017 Feb 7;9:15 [PMID: 28194238]
  36. Clin Epigenetics. 2021 Jan 7;13(1):7 [PMID: 33413638]
  37. Circulation. 2006 Jul 4;114(1):82-96 [PMID: 16785338]
  38. PLoS One. 2016 Jun 20;11(6):e0157776 [PMID: 27322064]
  39. Biochem Cell Biol. 2012 Apr;90(2):124-41 [PMID: 22221155]
  40. J Lipid Res. 2009 Sep;50(9):1917-26 [PMID: 19372593]
  41. Nat Commun. 2016 Mar 31;7:11089 [PMID: 27029739]
  42. Neuromolecular Med. 2014 Dec;16(4):845-55 [PMID: 25304910]
  43. Nature. 2008 Jun 5;453(7196):783-7 [PMID: 18454136]
  44. J Clin Endocrinol Metab. 2018 Dec 1;103(12):4395-4408 [PMID: 29846646]
  45. Sci Rep. 2016 Mar 15;6:22883 [PMID: 26975253]
  46. Epigenetics Chromatin. 2013 Mar 03;6(1):4 [PMID: 23452981]
  47. Nat Commun. 2021 Apr 23;12(1):2431 [PMID: 33893273]
  48. Genome Biol. 2016 Jun 27;17(1):138 [PMID: 27350042]
  49. J Clin Lipidol. 2021 Jul-Aug;15(4):602-607 [PMID: 34130940]
  50. J Biol Chem. 2010 Nov 12;285(46):36112-20 [PMID: 20739274]
  51. Biomedicines. 2020 Jun 28;8(7): [PMID: 32605309]
  52. J Biol Chem. 1992 Apr 25;267(12):8347-51 [PMID: 1373723]
  53. Diabetes Care. 2021 Jul;44(7):1682-1691 [PMID: 34001534]
  54. Circ Cardiovasc Genet. 2017 Jan;10(1): [PMID: 28213390]
  55. Epigenetics. 2017 Apr 3;12(4):287-295 [PMID: 28277977]
  56. Epigenetics. 2013 Feb;8(2):203-9 [PMID: 23314698]
  57. PLoS Genet. 2013 Jun;9(6):e1003572 [PMID: 23825961]
  58. Epigenetics. 2016 Jul 2;11(7):482-8 [PMID: 27148772]
  59. Mol Ther. 2021 Jan 6;29(1):275-290 [PMID: 33002420]
  60. Circ Cardiovasc Genet. 2015 Apr;8(2):334-42 [PMID: 25583993]

MeSH Term

Humans
Male
Female
DNA Methylation
Triglycerides
Insulin Resistance
Epigenesis, Genetic
Adipose Tissue

Chemicals

Triglycerides

Word Cloud

Created with Highcharts 10.0.0adiposetissuemethylationtriglyceridesDNAcirculatinglipidshumanepigeneticlevelsgeneexpressioneffectsinsulinresistanceegassociatedmetabolicsubcutaneousanalysedmenwomenlipoproteinmediationfoundnovelassociationsHOXA5cohortsitesDysregulationcentralelementsyndromeHoweverwellestablishedwhetheraffectedaffectmechanismsHenceaiminvestigateassociationgenome-widetwodifferentcohortsincluding8593respectivelyAssociationslow-densityhigh-densitytotalcholesterolCausalanalysestestedmediates115promoterRFS1ARID2maleP ≤ 11 × 10-763withinbodyPTPRN2COL6A3femaleconnectedfindingsalteredmRNAIL11FAM45BInterestinglyoverlappointstowardssex-specificepigenomeFinallycausalanalysisprovidedsupportpartialmediatingfactorstudyidentifiedalterationsIdentifiedchangesseemmediateCirculatinggeneslinkeddisease

Similar Articles

Cited By