Fred G Manrique-Abril, Carlos A Agudelo-Calderon, Víctor M González-Chordá, Oscar Gutiérrez-Lesmes, Cristian F Téllez-Piñerez, Giomar Herrera-Amaya
Author Information
Fred G Manrique-Abril: FM: RN. AB. Ph. D. Salud Pública; Ph.D. Investigación Clínica. Investigador, Instituto de Salud Pública. Profesor Titular, Facultad de Enfermería. Universidad Nacional de Colombia. Bogotá, Colombia. Universidad Pedagógica y tecnológica de Colombia. fgmanriquea@unal.edu.co.
Carlos A Agudelo-Calderon: CA. MD. Periodista. M. Sc. Salud Pública.M. Sc. Ciencias. Instituto de Salud Pública. Facultad de Medicina. Universidad Nacional de Colombia. Bogotá, Colombia. caagudeloc@unal.edu.co.
Víctor M González-Chordá: VG: RN. M. Sc. Enfermería. Ph.D. Ciencias de la Salud. Profesor ayudante doctor. Departamento de Enfermería. Universitat Jaume I. España. vchorda@uji.es.
Oscar Gutiérrez-Lesmes: OG. RN. Esp. Epidemiologia. M. Sc. Gestión Ambiental Sostenible. Ph. D(c). Epidemiologia. Profesor Asociado, Escuela de Salud Pública. Universidad de los Llanos. Villavicencio, Colombia. oagutierrez@unillanos.edu.co.
Cristian F Téllez-Piñerez: CT. Estadístico. M. Sc. Ciencias Estadística. Ph.D(c). Ciencias. Estadística. Profesor, Universidad Santo Tomas. Bogotá, Colombia. cristiantellez@usantotomas.edu.co.
Giomar Herrera-Amaya: GH. RN. M. Sc. Investigación en APD. Ph.D(c). Ciencias Enfermería. Profesora Asistente. Universidad Pedagógica y Tecnológica de Colombia. Grupo de Salud pública. giomar.herrera@uptc.edu.co.
OBJECTIVE: To develop a prognostic SIR model of the COVID-19 pandemic in Colombia. MATERIALS AND METHODS: A SIR model with a deterministic approach was used to forecast the development of the COVID-19 pandemic in Colombia. The states considered were susceptible (S), infectious (i) and recovered or deceased (R). Population data were obtained from the National Administrative Department of Statistics (DANE) - Population Projections 2018-2020, released in January 2020-, and data on daily confirmed cases of COVID-19 from the National Institute of Health. Different models were proposed varying the basic reproduction number (R0). RESULTS: Based on the cases reported by the Ministry of Health, 4 simulated environments were created in an epidemiological SIR model. The time series was extended until May 30, the probable date when 99% of the population will be infected. R0=2 is the basic reproduction number and the closest approximation to the behavior of the pandemic during the first 15 days since the first case report; the worst scenario would occur in the first week of April with R0=3. CONCLUSIONS: Further mitigation and suppression measures are necessary in the containment and sustained transmission phases, such as increased diagnostic capacity through testing and disinfection of populated areas and homes in isolation.