Extensive global wetland loss over the past three centuries.

Etienne Fluet-Chouinard, Benjamin D Stocker, Zhen Zhang, Avni Malhotra, Joe R Melton, Benjamin Poulter, Jed O Kaplan, Kees Klein Goldewijk, Stefan Siebert, Tatiana Minayeva, Gustaf Hugelius, Hans Joosten, Alexandra Barthelmes, Catherine Prigent, Filipe Aires, Alison M Hoyt, Nick Davidson, C Max Finlayson, Bernhard Lehner, Robert B Jackson, Peter B McIntyre
Author Information
  1. Etienne Fluet-Chouinard: Department of Earth System Science, Stanford University, Stanford, CA, USA. efluet@stanford.edu. ORCID
  2. Benjamin D Stocker: Department of Environmental Systems Science, ETH Zurich, Zürich, Switzerland.
  3. Zhen Zhang: Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
  4. Avni Malhotra: Department of Earth System Science, Stanford University, Stanford, CA, USA. ORCID
  5. Joe R Melton: Climate Research Division, Environment and Climate Change Canada, Victoria, British Columbia, Canada. ORCID
  6. Benjamin Poulter: NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD, USA. ORCID
  7. Jed O Kaplan: Department of Earth Sciences, The University of Hong Kong, Hong Kong SAR, China.
  8. Kees Klein Goldewijk: Faculty of Geosciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
  9. Stefan Siebert: Department of Crop Sciences, Georg-August-Universität Göttingen, Goettingen, Germany. ORCID
  10. Tatiana Minayeva: Care for Ecosystems, Goerlitz, Germany. ORCID
  11. Gustaf Hugelius: Department of Earth System Science, Stanford University, Stanford, CA, USA. ORCID
  12. Hans Joosten: Faculty of Mathematics and Natural Sciences, Peatland Studies and Paleoecology, University of Greifswald, Greifswald, Germany. ORCID
  13. Alexandra Barthelmes: Faculty of Mathematics and Natural Sciences, Peatland Studies and Paleoecology, University of Greifswald, Greifswald, Germany.
  14. Catherine Prigent: Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, Paris, France.
  15. Filipe Aires: Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, Paris, France.
  16. Alison M Hoyt: Department of Earth System Science, Stanford University, Stanford, CA, USA. ORCID
  17. Nick Davidson: Nick Davidson Environmental, Queens House, Wigmore, UK.
  18. C Max Finlayson: Gulbali Institute for Land, Water and Society, Charles Sturt University, Elizabeth Mitchell Drive, Albury, New South Wales, Australia.
  19. Bernhard Lehner: Department of Geography, McGill University, Montreal, Quebec, Canada. ORCID
  20. Robert B Jackson: Department of Earth System Science, Stanford University, Stanford, CA, USA. ORCID
  21. Peter B McIntyre: Center for Limnology, University of Wisconsin-Madison, Madison, WI, USA.

Abstract

Wetlands have long been drained for human use, thereby strongly affecting greenhouse gas fluxes, flood control, nutrient cycling and biodiversity. Nevertheless, the global extent of natural wetland loss remains remarkably uncertain. Here, we reconstruct the spatial distribution and timing of wetland loss through conversion to seven human land uses between 1700 and 2020, by combining national and subnational records of drainage and conversion with land-use maps and simulated wetland extents. We estimate that 3.4 million km (confidence interval 2.9-3.8) of inland wetlands have been lost since 1700, primarily for conversion to croplands. This net loss of 21% (confidence interval 16-23%) of global wetland area is lower than that suggested previously by extrapolations of data disproportionately from high-loss regions. Wetland loss has been concentrated in Europe, the United States and China, and rapidly expanded during the mid-twentieth century. Our reconstruction elucidates the timing and land-use drivers of global wetland losses, providing an improved historical baseline to guide assessment of wetland loss impact on Earth system processes, conservation planning to protect remaining wetlands and prioritization of sites for wetland restoration.

References

  1. Zedler, J. B. & Kercher, S. Wetland resources: status, trends, ecosystem services, and restorability. Annu. Rev. Environ. Resour. 30, 39–74 (2005). [DOI: 10.1146/annurev.energy.30.050504.144248]
  2. Finlayson, C. M. et al. Millennium Ecosystem Assessment: Ecosystems and Human Well-being: Wetlands and Water Synthesis (World Resources Institute, 2005).
  3. Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshwater Res. 65, 934 (2014). [DOI: 10.1071/MF14173]
  4. Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644 (2020). [DOI: 10.1038/s41467-020-15499-z]
  5. Schultz, B., Thatte, C. D. & Labhsetwar, V. K. Irrigation and drainage. Main contributors to global food production. Irrig. Drain. 54, 263–278 (2005). [DOI: 10.1002/ird.170]
  6. Valipour, M. et al. The evolution of agricultural drainage from the earliest times to the present. Sustainability 12, 416 (2020). [DOI: 10.3390/su12010416]
  7. Holden, J., Chapman, P. J. & Labadz, J. C. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Prog. Phys. Geogr. 28, 95–123 (2004). [DOI: 10.1191/0309133304pp403ra]
  8. Joosten, H. & Clarke, D. Wise Use of Mires and Peatlands (International Mire Conservation Group and International Peat Society, 2002).
  9. van Asselen, S., Verburg, P. H., Vermaat, J. E. & Janse, J. H. Drivers of wetland conversion: a global meta-analysis. PLoS ONE 8, e81292 (2013). [DOI: 10.1371/journal.pone.0081292]
  10. Maron, M. et al. The many meanings of no net loss in environmental policy. Nat. Sustain. 1, 19–27 (2018). [DOI: 10.1038/s41893-017-0007-7]
  11. Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997). [DOI: 10.1038/387253a0]
  12. Page, S. E. & Hooijer, A. In the line of fire: the peatlands of Southeast Asia. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150176 (2016). [DOI: 10.1098/rstb.2015.0176]
  13. Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016). [DOI: 10.1016/j.gecco.2016.02.004]
  14. Wada, Y. et al. Recent changes in land water storage and its contribution to sea level variations. Surv. Geophys. 38, 131–152 (2017). [DOI: 10.1007/s10712-016-9399-6]
  15. Xu, J., Morris, P. J., Liu, J. & Holden, J. Hotspots of peatland-derived potable water use identified by global analysis. Nat. Sustain. 1, 246–253 (2018). [DOI: 10.1038/s41893-018-0064-6]
  16. Sterling, S. M., Ducharne, A. & Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 3, 385–390 (2013). [DOI: 10.1038/nclimate1690]
  17. Abril, G. & Borges, A. V. Ideas and perspectives: carbon leaks from flooded land: do we need to replumb the inland water active pipe? Biogeosciences 16, 769–784 (2019). [DOI: 10.5194/bg-16-769-2019]
  18. Qiu, C. et al. Large historical carbon emissions from cultivated northern peatlands. Sci. Adv. 7, eabf1332 (2021). [DOI: 10.1126/sciadv.abf1332]
  19. Bahram, M. et al. Structure and function of the soil microbiome underlying NO emissions from global wetlands. Nat. Commun. 13, 1430 (2022). [DOI: 10.1038/s41467-022-29161-3]
  20. Paudel, R., Mahowald, N. M., Hess, P. G. M., Meng, L. & Riley, W. J. Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC. Environ. Res. Lett. 11, 034020 (2016). [DOI: 10.1088/1748-9326/11/3/034020]
  21. Cheng, F. Y., Van Meter, K. J., Byrnes, D. K. & Basu, N. B. Maximizing US nitrate removal through wetland protection and restoration. Nature 588, 625–630 (2020). [DOI: 10.1038/s41586-020-03042-5]
  22. Bullock, A. & Acreman, M. The role of wetlands in the hydrological cycle. Hydrol. Earth Syst. Sci. 7, 358–389 (2003). [DOI: 10.5194/hess-7-358-2003]
  23. Castellano, M. J., Archontoulis, S. V., Helmers, M. J., Poffenbarger, H. J. & Six, J. Sustainable intensification of agricultural drainage. Nat. Sustain. 2, 914–921 (2019). [DOI: 10.1038/s41893-019-0393-0]
  24. IPCC. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands: Methodological Guidance on Lands with Wet and Drained Soils, and Constructed Wetlands for Wastewater Treatment (2013).
  25. Tubiello, F., Biancalani, R., Salvatore, M., Rossi, S. & Conchedda, G. A worldwide assessment of greenhouse gas emissions from drained organic soils. Sustainability 8, 371 (2016). [DOI: 10.3390/su8040371]
  26. Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020). [DOI: 10.1073/pnas.1916387117]
  27. Pongratz, J. et al. Models meet data: challenges and opportunities in implementing land management in Earth system models. Glob. Chang. Biol. 24, 1470–1487 (2018). [DOI: 10.1111/gcb.13988]
  28. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Land Degradation Assessment (2018).
  29. Ramsar Convention Secretariat, Ramsar Convention on Wetlands. Global Wetland Outlook: State of the World’s Wetlands and their Services to People (2018).
  30. Winkler, M. G. & DeWitt, C. B. Environmental impacts of peat mining in the United States: documentation for wetland conservation. Environ. Conserv. 12, 317–330 (1985). [DOI: 10.1017/S0376892900034433]
  31. Darrah, S. E. et al. Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecol. Indic. 99, 294–298 (2019). [DOI: 10.1016/j.ecolind.2018.12.032]
  32. Hu, S., Niu, Z., Chen, Y., Li, L. & Zhang, H. Global wetlands: potential distribution, wetland loss, and status. Sci. Total Environ. 586, 319–327 (2017). [DOI: 10.1016/j.scitotenv.2017.02.001]
  33. Verhoeven, J. T. A. & Setter, T. L. Agricultural use of wetlands: opportunities and limitations. Ann. Bot. 105, 155–163 (2010). [DOI: 10.1093/aob/mcp172]
  34. Pavelis, G. A. Farm Drainage in the United States: History, Status, and Prospects (Economic Research Service, 1987).
  35. Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018). [DOI: 10.1038/s41467-018-03406-6]
  36. Rooney, R. C., Bayley, S. E. & Schindler, D. W. Oil sands mining and reclamation cause massive loss of peatland and stored carbon. Proc. Natl Acad. Sci. USA 109, 4933–4937 (2012). [DOI: 10.1073/pnas.1117693108]
  37. Acreman, M. & Holden, J. How wetlands affect floods. Wetlands 33, 773–786 (2013). [DOI: 10.1007/s13157-013-0473-2]
  38. Creed, I. F. et al. Enhancing protection for vulnerable waters. Nat. Geosci. 10, 809–815 (2017). [DOI: 10.1038/ngeo3041]
  39. Cohen, M. J. et al. Do geographically isolated wetlands influence landscape functions? Proc. Natl Acad. Sci. USA 113, 1978–1986 (2016). [DOI: 10.1073/pnas.1512650113]
  40. Borges, A. V. et al. Divergent biophysical controls of aquatic CO and CH in the World’s two largest rivers. Sci. Rep. 5, 15614 (2015). [DOI: 10.1038/srep15614]
  41. Melton, J. R. et al. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10, 753–788 (2013). [DOI: 10.5194/bg-10-753-2013]
  42. Ritzema, H. P. Drain for gain: managing salinity in irrigated lands—a review. Agric. Water Manage. 176, 18–28 (2016). [DOI: 10.1016/j.agwat.2016.05.014]
  43. Gallant, A. The challenges of remote monitoring of wetlands. Remote Sens. 7, 10938–10950 (2015). [DOI: 10.3390/rs70810938]
  44. de Zeeuw, J. W. Peat and the Dutch golden age. The historical meaning of energy-attainability. A. A. G. Bijdr. 21, 3–31 (1978).
  45. Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014). [DOI: 10.1126/science.1260510]
  46. Feick, S., Siebert, S. & Döll, P. A Digital Global Map of Artificially Drained Agricultural Areas (Johann Wolfgang Goethe-Universität Frankfurt am Main, 2005); https://www.uni-frankfurt.de/45217762/FHP_04_Feick_et_al_2005.pdf .
  47. Irrigation and Drainage in the World – A Global Review Vols I–III (International Commission on Irrigation & Drainage, 1982).
  48. FAOSTAT (Food and Agriculture Organization of the United Nations, accessed 21 October 2021); https://www.fao.org/faostat/en/ .
  49. McCorvie, M. R. & Lant, C. L. Drainage district formation and the loss of Midwestern wetlands, 1850–1930. Agric. Hist. 67, 13–39 (1993).
  50. AQUASTAT (Food and Agriculture Organization of the United Nations, accessed 17 August 2018); https://www.fao.org/aquastat/en/ .
  51. Kearns, K. C. Development of the Irish peat fuel industry. Am. J. Econ. Sociol. 37, 179–193 (1978). [DOI: 10.1111/j.1536-7150.1978.tb02813.x]
  52. Schultz, B., Zimmer, D. & Vlotman, W. F. Drainage under increasing and changing requirements. Irrig. Drain. Syst. 56, S3–S22 (2007). [DOI: 10.1002/ird.372]
  53. Niu, Z. et al. Mapping wetland changes in China between 1978 and 2008. Chin. Sci. Bull. 57, 2813–2823 (2012). [DOI: 10.1007/s11434-012-5093-3]
  54. Dahl, T. E. Wetlands Losses in the United States 1780’s to 1980’s: Report to Congress (US Department of Energy, 1990).
  55. Zhang, Z., Fluet-Chouinard, E. & Jensen, K. Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Earth Syst. Sci. Data 13, 2001–2023 (2021).
  56. Prigent, C., Jimenez, C. & Bousquet, P. Satellite‐derived global surface water extent and dynamics over the last 25 years (GIEMS‐2). J. Geophys. Res. Atmos. 125, e2019JD030711 (2020).
  57. Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004). [DOI: 10.1016/j.jhydrol.2004.03.028]
  58. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016). [DOI: 10.1038/nature20584]
  59. Carroll, M. L., Townshend, J. R., DiMiceli, C. M., Noojipady, P. & Sohlberg, R. A. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth 2, 291–308 (2009). [DOI: 10.1080/17538940902951401]
  60. Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000–global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cycles 24, March 2010 (2010).
  61. Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013). [DOI: 10.5194/essd-5-3-2013]
  62. Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Chang. Biol. 23, 3581–3599 (2017). [DOI: 10.1111/gcb.13689]
  63. Zhang, Z., Zimmermann, N. E., Kaplan, J. O. & Poulter, B. Modeling spatiotemporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties. Biogeosciences 13, 1387–1408 (2016). [DOI: 10.5194/bg-13-1387-2016]
  64. Beven, K. J. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24, 43–69 (1979). [DOI: 10.1080/02626667909491834]
  65. Wania, R. et al. Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geosci. Model Dev. 6, 617–641 (2013). [DOI: 10.5194/gmd-6-617-2013]
  66. Goldewijk, K. K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017). [DOI: 10.5194/essd-9-927-2017]
  67. Goldewijk, K. K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecol. Biogeogr. 20, 73–86 (2011). [DOI: 10.1111/j.1466-8238.2010.00587.x]
  68. Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020). [DOI: 10.5194/gmd-13-5425-2020]
  69. Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).
  70. Padfield, D. & Matheson, D. P. A. nls.multstart: Robust non-linear regression using AIC scores. R Project https://mran.microsoft.com/snapshot/2021-08-04/web/packages/nls.multstart/index.html (2020).
  71. Smedema, L. K., Abdel-Dayem, S. & Ochs, W. J. Drainage and agricultural development. Irrig. Drain. Syst. 14, 223–235 (2000). [DOI: 10.1023/A]
  72. Murphy, F., Devlin, G. & McDonnell, K. Benchmarking environmental impacts of peat use for electricity generation in Ireland—a life cycle assessment. Sustain. Sci. Pract. Policy 7, 6376–6393 (2015).
  73. Denham, T. Archaeological evidence for mid-Holocene agriculture in the interior of Papua New Guinea: a critical review. Archaeol. Oceania 38, 159–176 (2003). [DOI: 10.1002/j.1834-4453.2003.tb00542.x]
  74. Fuller, D. Q. & Qin, L. Water management and labour in the origins and dispersal of Asian rice. World Archaeol. 41, 88–111 (2009). [DOI: 10.1080/00438240802668321]
  75. Bellwood, P. The checkered prehistory of rice movement southwards as a domesticated cereal—from the Yangzi to the Equator. Rice 4, 93–103 (2011). [DOI: 10.1007/s12284-011-9068-9]
  76. Vörösmarty, C. J. & Fekete, B. ISLSCP II river routing data (STN-30p). ORNL DAAC https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1005 (2011).

Grants

  1. DEB-1115025/National Science Foundation

MeSH Term

Humans
Biodiversity
China
Europe
Wetlands
Natural Resources
Spatio-Temporal Analysis
United States
History, 18th Century
History, 19th Century
History, 20th Century
History, 21st Century

Word Cloud

Created with Highcharts 10.0.0wetlandlossglobalconversionhumantiming1700land-useconfidenceintervalwetlandsWetlandslongdrainedusetherebystronglyaffectinggreenhousegasfluxesfloodcontrolnutrientcyclingbiodiversityNeverthelessextentnaturalremainsremarkablyuncertainreconstructspatialdistributionsevenlanduses2020combiningnationalsubnationalrecordsdrainagemapssimulatedextentsestimate34 million km29-38inlandlostsinceprimarilycroplandsnet21%16-23%arealowersuggestedpreviouslyextrapolationsdatadisproportionatelyhigh-lossregionsWetlandconcentratedEuropeUnitedStatesChinarapidlyexpandedmid-twentiethcenturyreconstructionelucidatesdriverslossesprovidingimprovedhistoricalbaselineguideassessmentimpactEarthsystemprocessesconservationplanningprotectremainingprioritizationsitesrestorationExtensivepastthreecenturies

Similar Articles

Cited By