Artificial Intelligence and Machine Learning Based Prediction of Viral Load and CD4 Status of People Living with HIV (PLWH) on Anti-Retroviral Treatment in Gedeo Zone Public Hospitals.

Binyam Tariku Seboka, Delelegn Emwodew Yehualashet, Getanew Aschalew Tesfa
Author Information
  1. Binyam Tariku Seboka: School of Public Health, Dilla University, Dilla, Ethiopia. ORCID
  2. Delelegn Emwodew Yehualashet: School of Public Health, Dilla University, Dilla, Ethiopia. ORCID
  3. Getanew Aschalew Tesfa: School of Public Health, Dilla University, Dilla, Ethiopia. ORCID

Abstract

Background: Despite the success made in scaling up HIV treatment activities, there remains a tremendous unmet demand for the monitoring of the disease progression and treatment success, which threatens HIV/AIDS treatment and control. This research presented the assessments of viral load and CD4 classification of adults enrolled in ART care using machine learning algorithms.
Methods: We trained, validated, and tested eight machine learning (ML) classifier algorithms with historical data, including demographics, clinical, and laboratory data. Data were extracted from the ART registry database of Yirgacheffe Primary Hospital and Dilla University Referral Hospital. ML classifiers were trained to predict virological failure (viral load >1000 copies/mL) and poor CD4 (CD4 cell count <200 cells/mL). The model predictive performances were evaluated using accuracy, sensitivity, specificity, precision, f1-score, F-beta scores, and AUC.
Results: The mean age of the sample participants was 41.6 years (SD = 10.9). The experimental results showed that XGB classifier ranked as the best algorithm for viral load prediction in terms of sensitivity (97%), f1-score (96%), AUC (0.99), accuracy (96%), followed by RF. The GB classifier exhibited a better predictive capability in predicting participants with a CD4 cell count <200 cells/mL.
Conclusion: In this study, the XGB and RF models had the highest accuracy and outperformed on various evaluation metrics among the models examined for viral load classification. In the prediction of participants CD4, GB model had the highest accuracy.

Keywords

References

  1. AIDS. 2021 May 1;35(Suppl 1):S7-S18 [PMID: 33867485]
  2. J Healthc Eng. 2021 Oct 29;2021:1161923 [PMID: 34745487]
  3. Sci Rep. 2020 Mar 26;10(1):5487 [PMID: 32218465]
  4. PLoS Comput Biol. 2021 Sep 22;17(9):e1009336 [PMID: 34550966]
  5. J Acquir Immune Defic Syndr. 2022 Jun 1;90(2):154-160 [PMID: 35262514]
  6. PLoS Negl Trop Dis. 2022 May 4;16(5):e0010388 [PMID: 35507586]
  7. Circ Cardiovasc Qual Outcomes. 2021 Oct;14(10):e007526 [PMID: 34601947]
  8. Infect Genet Evol. 2022 Mar;98:105224 [PMID: 35081465]
  9. J Acquir Immune Defic Syndr. 2020 Aug 1;84(4):414-421 [PMID: 32251142]
  10. AIDS. 2021 Jun 1;35(7):1021-1029 [PMID: 33710021]
  11. AIDS. 2021 Sep 1;35(11):1785-1793 [PMID: 34033588]
  12. AIDS. 2020 Apr 1;34(5):737-748 [PMID: 31895148]
  13. Heliyon. 2019 Jul 20;5(7):e02080 [PMID: 31372545]
  14. AIDS. 2021 May 1;35(Suppl 1):S39-S51 [PMID: 33867488]
  15. EBioMedicine. 2021 Apr;66:103306 [PMID: 33839064]
  16. Infection. 2020 Dec;48(6):929-933 [PMID: 32845429]
  17. Global Health. 2020 Feb 24;16(1):17 [PMID: 32093771]
  18. Viruses. 2020 Feb 28;12(3): [PMID: 32121161]
  19. Comput Methods Programs Biomed. 2017 Dec;152:149-157 [PMID: 29054255]
  20. J Acquir Immune Defic Syndr. 2015 May 1;69(1):109-18 [PMID: 25942462]
  21. Ethiop J Health Sci. 2017 Feb;27(Suppl 1):1-2 [PMID: 28465648]
  22. BMC Infect Dis. 2019 Feb 15;19(1):169 [PMID: 30770728]
  23. J Clin Invest. 2021 Jan 4;131(1): [PMID: 32970635]
  24. Hum Resour Health. 2008 Jan 31;6:2 [PMID: 18237419]
  25. Radiol Clin North Am. 2021 Nov;59(6):933-940 [PMID: 34689878]
  26. J Neurovirol. 2020 Dec;26(6):880-887 [PMID: 32681213]
  27. AIDS. 2021 May 1;35(Suppl 1):S29-S38 [PMID: 33867487]
  28. AIDS Care. 2021 Apr;33(4):530-536 [PMID: 32266825]
  29. Annu Rev Biomed Eng. 2006;8:537-65 [PMID: 16834566]
  30. J Acquir Immune Defic Syndr. 2021 Dec 15;88(5):439-447 [PMID: 34520443]
  31. EBioMedicine. 2021 May;67:103350 [PMID: 33965872]
  32. Bioinformation. 2019 Dec 8;15(11):790-798 [PMID: 31902978]
  33. Stat Methods Med Res. 2021 Jan;30(1):166-184 [PMID: 32772626]
  34. BMC Med Inform Decis Mak. 2018 Sep 4;18(1):77 [PMID: 30180893]
  35. BMC Med Res Methodol. 2022 Jun 17;22(1):174 [PMID: 35715730]
  36. Curr Opin HIV AIDS. 2020 Mar;15(2):126-133 [PMID: 31833963]
  37. Comput Biol Med. 2017 Dec 1;91:366-371 [PMID: 29127902]
  38. Hum Brain Mapp. 2018 Jun;39(6):2532-2540 [PMID: 29488278]
  39. BMC Infect Dis. 2022 Feb 4;22(1):122 [PMID: 35120435]
  40. Artif Intell Med. 2009 Sep;47(1):63-74 [PMID: 19524413]
  41. Comput Math Methods Med. 2012;2012:893474 [PMID: 22536298]
  42. Curr Infect Dis Rep. 2002 Oct;4(5):461-467 [PMID: 12228034]
  43. J Int AIDS Soc. 2020 Mar;23(3):e25467 [PMID: 32202067]
  44. BMC Med Inform Decis Mak. 2021 Apr 10;21(1):125 [PMID: 33836752]
  45. J Acquir Immune Defic Syndr Hum Retrovirol. 1999 Feb 1;20(2):129-36 [PMID: 10048899]
  46. Front Cell Infect Microbiol. 2022 May 12;12:867737 [PMID: 35646738]
  47. Sci Rep. 2022 Jul 26;12(1):12715 [PMID: 35882962]

Word Cloud

Created with Highcharts 10.0.0CD4viralloadtreatmentaccuracyHIVARTmachinelearningMLclassifiercountparticipantssuccessclassificationusingalgorithmstraineddataHospitalcell<200cells/mLmodelpredictivesensitivityf1-scoreAUCXGBprediction96%RFGBmodelshighestBackground:DespitemadescalingactivitiesremainstremendousunmetdemandmonitoringdiseaseprogressionthreatensHIV/AIDScontrolresearchpresentedassessmentsadultsenrolledcareMethods:validatedtestedeighthistoricalincludingdemographicsclinicallaboratoryDataextractedregistrydatabaseYirgacheffePrimaryDillaUniversityReferralclassifierspredictvirologicalfailure>1000copies/mLpoorperformancesevaluatedspecificityprecisionF-betascoresResults:meanagesample416yearsSD=109experimentalresultsshowedrankedbestalgorithmterms97%099followedexhibitedbettercapabilitypredictingConclusion:studyoutperformedvariousevaluationmetricsamongexaminedArtificialIntelligenceMachineLearningBasedPredictionViralLoadStatusPeopleLivingPLWHAnti-RetroviralTreatmentGedeoZonePublicHospitalsAIanti-retroviralartificialintelligence

Similar Articles

Cited By