Multi-omics analysis of N6-methyladenosine reader IGF2BP3 as a promising biomarker in pan-cancer.

Pin Chen, Jing Xu, Zihan Cui, Silin Wu, Tao Xie, Xiaobiao Zhang
Author Information
  1. Pin Chen: Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.
  2. Jing Xu: Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
  3. Zihan Cui: Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China.
  4. Silin Wu: Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.
  5. Tao Xie: Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.
  6. Xiaobiao Zhang: Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.

Abstract

Background: Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) has been reported to exhibit an oncogenic effect as an RNA-binding protein (RBP) by promoting tumor cell proliferation, migration and invasion in several tumor types. However, a pan-cancer analysis of IGF2BP3 is not currently available, and the exact roles of IGF2BP3 in prognosis and immunology in cancer patients remain enigmatic. The main aim of this study was to provide visualization of the systemic prognostic landscape of IGF2BP3 in pan-cancer and to uncover the potential relationship between IGF2BP3 expression in the tumor microenvironment and immune infiltration profile.
Methods: Raw data on IGF2BP3 expression were obtained from GTEx, CCLE, TCGA, and HPA data portals. We have investigated the expression patterns, diagnostic and prognostic significance, mutation landscapes, functional analysis, and functional states of IGF2BP3 utilizing multiple databases, including HPA, TISIDB, cBioPortal, GeneMANIA, GESA, and CancerSEA. Moreover, the relationship of IGF2BP3 expression with immune infiltrates, TMB, MSI and immune-related genes was evaluated in pan-cancer. IGF2BP3 with drug sensitivity analysis was performed from the CellMiner database. Furthermore, the expression of IGF2BP3 in different grades of glioma was detected by immunohistochemical staining and western blot.
Results: We found that IGF2BP3 was ubiquitously highly expressed in pan-cancer and significantly correlated with diagnosis, prognosis, TMB, MSI, and drug sensitivity in various types of cancer. Besides, IGF2BP3 was involved in many cancer pathways and varied in different immune and molecular subtypes of cancers. Additionally, IGF2BP3 is critically associated with genetic markers of immunomodulators in various cancers. Finally, we validated that IGF2BP3 protein expression was significantly higher in glioma than in normal tissue, especially in GBM.
Conclusions: IGF2BP3 may be a potential molecular biomarker for diagnosis and prognosis in pan-cancer, especially for glioma. It could become a novel therapeutic target for various cancers.

Keywords

References

  1. Adv Exp Med Biol. 2019;1157:29-39 [PMID: 31342436]
  2. Mod Pathol. 2007 Feb;20(2):242-7 [PMID: 17192788]
  3. Nat Cell Biol. 2018 Mar;20(3):285-295 [PMID: 29476152]
  4. EBioMedicine. 2019 Mar;41:357-369 [PMID: 30797711]
  5. Semin Cancer Biol. 2014 Dec;29:3-12 [PMID: 25068994]
  6. Cancer Res. 2019 Sep 15;79(18):4557-4566 [PMID: 31350295]
  7. Cancer Sci. 2014 Nov;105(11):1480-6 [PMID: 25183551]
  8. Hum Pathol. 2017 Apr;62:152-159 [PMID: 28089541]
  9. Cell. 2017 Nov 2;171(4):934-949.e16 [PMID: 29033130]
  10. Front Cell Dev Biol. 2020 Jan 15;7:363 [PMID: 32010687]
  11. Nature. 2012 Mar 28;483(7391):603-7 [PMID: 22460905]
  12. Science. 2015 Apr 3;348(6230):124-8 [PMID: 25765070]
  13. Cell Death Dis. 2014 Jan 23;5:e1025 [PMID: 24457969]
  14. Ann Surg Oncol. 2009 Dec;16(12):3499-506 [PMID: 19672661]
  15. JAMA Oncol. 2020 Jun 1;6(6):831-838 [PMID: 32379280]
  16. Lancet. 2018 May 26;391(10135):2128-2139 [PMID: 29754777]
  17. Cell. 2015 Jun 4;161(6):1388-99 [PMID: 26046440]
  18. BJU Int. 2012 Jul;110(1):63-8 [PMID: 22077633]
  19. Oncogene. 1997 Jun 5;14(22):2729-33 [PMID: 9178771]
  20. Nucleic Acids Res. 2019 Jan 8;47(D1):D900-D908 [PMID: 30329142]
  21. Mol Cell Biol. 1999 Feb;19(2):1262-70 [PMID: 9891060]
  22. Cell. 2015 Jan 15;160(1-2):48-61 [PMID: 25594174]
  23. Cell Res. 2018 Jun;28(6):616-624 [PMID: 29789545]
  24. Eur J Cancer. 2012 Dec;48(18):3405-13 [PMID: 22840368]
  25. Am J Surg Pathol. 2005 Feb;29(2):188-95 [PMID: 15644775]
  26. Ann Oncol. 2018 Oct 1;29(10):2085-2091 [PMID: 30165371]
  27. Mech Dev. 1999 Oct;88(1):95-9 [PMID: 10525192]
  28. Nucleic Acids Res. 2018 Jul 2;46(W1):W60-W64 [PMID: 29912392]
  29. Front Oncol. 2021 Feb 23;11:624395 [PMID: 33718187]
  30. Int J Oncol. 2016 Mar;48(3):1007-15 [PMID: 26782292]
  31. Oncogene. 2007 May 14;26(22):3291-310 [PMID: 17496923]
  32. Nature. 2016 Mar 3;531(7592):47-52 [PMID: 26909576]
  33. Cancer Lett. 2016 Sep 28;380(1):340-8 [PMID: 26828013]
  34. Am J Cancer Res. 2021 Apr 15;11(4):1428-1445 [PMID: 33948366]
  35. J Immunother Cancer. 2019 Jul 15;7(1):183 [PMID: 31307554]
  36. Nat Biotechnol. 2020 Jun;38(6):675-678 [PMID: 32444850]
  37. Onco Targets Ther. 2017 Aug 01;10:3861-3866 [PMID: 28814885]
  38. PeerJ. 2020 Feb 6;8:e8509 [PMID: 32071816]
  39. Hepatology. 2021 Sep;74(3):1480-1495 [PMID: 33825218]
  40. Bioinformatics. 2019 Oct 15;35(20):4200-4202 [PMID: 30903160]
  41. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W214-20 [PMID: 20576703]
  42. Cell Mol Neurobiol. 2022 Nov;42(8):2733-2743 [PMID: 34432221]
  43. Arch Pathol Lab Med. 2013 Jul;137(7):887-93 [PMID: 23808460]
  44. Cancer Cell. 2020 Jan 13;37(1):55-70.e15 [PMID: 31935372]
  45. Genomics. 2020 Nov;112(6):4304-4315 [PMID: 32682809]
  46. Mol Cancer. 2022 Mar 16;21(1):76 [PMID: 35296338]
  47. Cancer Discov. 2012 May;2(5):401-4 [PMID: 22588877]
  48. Hepatology. 2008 Oct;48(4):1118-27 [PMID: 18802962]
  49. Br J Cancer. 2003 Mar 24;88(6):887-94 [PMID: 12644826]
  50. Mol Cancer. 2022 Feb 23;21(1):60 [PMID: 35197058]
  51. Braz J Med Biol Res. 2021 May 17;54(7):e10612 [PMID: 34008756]
  52. Front Oncol. 2022 Jan 19;11:795467 [PMID: 35127504]
  53. Immunity. 2018 Apr 17;48(4):812-830.e14 [PMID: 29628290]
  54. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 33003204]
  55. Gastroenterology. 2010 Jun;138(6):2073-2087.e3 [PMID: 20420947]
  56. Nat Commun. 2020 May 22;11(1):2578 [PMID: 32444598]
  57. J Exp Clin Cancer Res. 2020 Sep 29;39(1):203 [PMID: 32993738]
  58. Cell Mol Life Sci. 2013 Aug;70(15):2657-75 [PMID: 23069990]
  59. Nature. 2012 Apr 29;485(7397):201-6 [PMID: 22575960]
  60. Nat Rev Cancer. 2020 Apr;20(4):218-232 [PMID: 32024970]
  61. Mol Cancer. 2019 Dec 4;18(1):176 [PMID: 31801551]
  62. Front Oncol. 2020 Nov 10;10:569887 [PMID: 33244455]
  63. Int J Mol Sci. 2020 Feb 28;21(5): [PMID: 32121275]
  64. J Biol Chem. 2011 Jul 22;286(29):25882-90 [PMID: 21613208]
  65. Mod Pathol. 2008 Apr;21(4):431-7 [PMID: 18204432]
  66. Biochim Biophys Acta Rev Cancer. 2020 Dec;1874(2):188420 [PMID: 32828886]
  67. Cancer Res. 2012 Jul 15;72(14):3499-511 [PMID: 22802077]
  68. Sci Signal. 2013 Apr 02;6(269):pl1 [PMID: 23550210]
  69. Cancer Res. 2020 Dec 1;80(23):5174-5188 [PMID: 33067266]
  70. Pharmacol Ther. 2019 Feb;194:84-106 [PMID: 30268773]
  71. Nat Commun. 2013;4:2612 [PMID: 24113773]
  72. Science. 2017 Jul 28;357(6349):409-413 [PMID: 28596308]
  73. Nat Genet. 2019 Feb;51(2):202-206 [PMID: 30643254]
  74. Nucleic Acids Res. 2020 Jul 2;48(W1):W509-W514 [PMID: 32442275]
  75. Oncogene. 2021 Jul;40(26):4413-4424 [PMID: 34108619]

MeSH Term

Humans
Adenosine
Biomarkers
Glioma
Multiomics
Tumor Microenvironment
Biomarkers, Tumor
Neoplasms

Chemicals

Adenosine
Biomarkers
Biomarkers, Tumor
IGF2BP3 protein, human

Word Cloud

Created with Highcharts 10.0.0IGF2BP3pan-cancerexpressionanalysisproteinprognosisimmunetumorcancergliomavariouscancersgrowthfactor2mRNA-binding3typesprognosticpotentialrelationshipinfiltrationdataTCGAHPAfunctionalTMBMSIdrugsensitivitydifferentsignificantlydiagnosismoleculargeneticespeciallybiomarkerBackground:Insulin-likereportedexhibitoncogeniceffectRNA-bindingRBPpromotingcellproliferationmigrationinvasionseveralHowevercurrentlyavailableexactrolesimmunologypatientsremainenigmaticmainaimstudyprovidevisualizationsystemiclandscapeuncovermicroenvironmentprofileMethods:RawobtainedGTExCCLEportalsinvestigatedpatternsdiagnosticsignificancemutationlandscapesstatesutilizingmultipledatabasesincludingTISIDBcBioPortalGeneMANIAGESACancerSEAMoreoverinfiltratesimmune-relatedgenesevaluatedperformedCellMinerdatabaseFurthermoregradesdetectedimmunohistochemicalstainingwesternblotResults:foundubiquitouslyhighlyexpressedcorrelatedBesidesinvolvedmanypathwaysvariedsubtypesAdditionallycriticallyassociatedmarkersimmunomodulatorsFinallyvalidatedhighernormaltissueGBMConclusions:maybecomenoveltherapeutictargetMulti-omicsN6-methyladenosinereaderpromisingalterationinsulin-likeCancerGenomeAtlas

Similar Articles

Cited By