Effects of electroacupuncture on urinary metabolome and microbiota in presenilin1/2 conditional double knockout mice.

Jie Gao, Nian Zhou, Mengna Lu, Qixue Wang, Chenyi Zhao, Jian Wang, Mingmei Zhou, Ying Xu
Author Information
  1. Jie Gao: School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  2. Nian Zhou: Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  3. Mengna Lu: Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  4. Qixue Wang: Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  5. Chenyi Zhao: Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  6. Jian Wang: School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  7. Mingmei Zhou: Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  8. Ying Xu: Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Abstract

Aim: The treatment of Alzheimer's disease (AD) is still a worldwide problem due to the unclear pathogenesis and lack of effective therapeutic targets. In recent years, metabolomic and gut microbiome changes in patients with AD have received increasing attention, and the microbiome-gut-brain (MGB) axis has been proposed as a new hypothesis for its etiology. Considering that electroacupuncture (EA) efficiently moderates cognitive deficits in AD and its mechanisms remain poorly understood, especially regarding its effects on the gut microbiota, we performed urinary metabolomic and microbial community profiling on EA-treated AD model mice, presenilin 1/2 conditional double knockout (PS cDKO) mice, to observe the effect of EA treatment on the gut microbiota in AD and find the connection between affected gut microbiota and metabolites.
Materials and methods: After 30 days of EA treatment, the recognition memory ability of PS cDKO mice was evaluated by the Y maze and the novel object recognition task. Urinary metabolomic profiling was conducted with the untargeted GC-MS method, and 16S rRNA sequence analysis was applied to analyze the microbial community. In addition, the association between differential urinary metabolites and gut microbiota was clarified by Spearman's correlation coefficient analysis.
Key findings: In addition to reversed cognitive deficits, the urinary metabolome and gut microbiota of PS cDKO mice were altered as a result of EA treatment. Notably, the increased level of isovalerylglycine and the decreased levels of glycine and threonic acid in the urine of PS cDKO mice were reversed by EA treatment, which is involved in glyoxylate and dicarboxylate metabolism, as well as glycine, serine, and threonine metabolism. In addition to significantly enhancing the diversity and richness of the microbial community, EA treatment significantly increased the abundance of the genus , while displaying no remarkable effect on the other major altered gut microbiota in PS cDKO mice, , , and . There was a significant correlation between differential urinary metabolites and differential gut microbiota.
Significance: Electroacupuncture alleviates cognitive deficits in AD by modulating gut microbiota and metabolites. might play an important role in the underlying mechanism of EA treatment. Our study provides a reference for future treatment of AD from the MGB axis.

Keywords

References

  1. Front Cell Infect Microbiol. 2019 Jun 26;9:221 [PMID: 31297340]
  2. Aging (Albany NY). 2020 Jan 6;12(1):628-649 [PMID: 31907339]
  3. J Alzheimers Dis. 2018;63(4):1337-1346 [PMID: 29758946]
  4. Neurobiol Aging. 2020 Mar;87:35-43 [PMID: 31813629]
  5. Cell Host Microbe. 2020 Aug 12;28(2):201-222 [PMID: 32791113]
  6. Acupunct Med. 2017 Mar;35(1):44-51 [PMID: 27401747]
  7. Sci Rep. 2016 Jul 21;6:30028 [PMID: 27443609]
  8. Cell Res. 2019 Oct;29(10):787-803 [PMID: 31488882]
  9. EBioMedicine. 2019 Sep;47:529-542 [PMID: 31477562]
  10. Sci Rep. 2016 Jun 09;6:27524 [PMID: 27276998]
  11. Expert Rev Neurother. 2018 Jan;18(1):83-90 [PMID: 29095058]
  12. Med Microbiol Immunol. 2021 Aug;210(4):173-179 [PMID: 34021796]
  13. Nutrients. 2019 Jun 01;11(6): [PMID: 31159409]
  14. Amino Acids. 2022 Mar;54(3):353-364 [PMID: 34085156]
  15. Brain Behav Immun. 2019 Nov;82:45-62 [PMID: 31376499]
  16. Curr Opin Lipidol. 2017 Feb;28(1):60-67 [PMID: 27922847]
  17. Neuron. 2004 Apr 8;42(1):23-36 [PMID: 15066262]
  18. Mass Spectrom Rev. 2017 Mar;36(2):115-134 [PMID: 25881008]
  19. Mol Nutr Food Res. 2020 Jan;64(2):e1900636 [PMID: 31835282]
  20. Neuropharmacology. 2016 Sep;108:426-39 [PMID: 27178134]
  21. J Alzheimers Dis. 2020;73(4):1385-1405 [PMID: 31958093]
  22. Biol Res. 2018 Jul 6;51(1):21 [PMID: 29980225]
  23. J Neurochem. 2009 Aug;110(4):1226-40 [PMID: 19549282]
  24. mSphere. 2021 Dec 22;6(6):e0085121 [PMID: 34851167]
  25. J Nutr. 2004 Mar;134(3):489-92 [PMID: 14988435]
  26. Alzheimers Dement. 2011 May;7(3):309-17 [PMID: 21075060]
  27. Amino Acids. 2007 Feb;32(2):213-24 [PMID: 17031479]
  28. World J Gastroenterol. 2017 Jan 7;23(1):60-75 [PMID: 28104981]
  29. Neural Plast. 2019 May 15;2019:2823679 [PMID: 31223308]
  30. OMICS. 2020 Oct;24(10):592-601 [PMID: 32907488]
  31. Nutrition. 2011 Jan;27(1):3-20 [PMID: 21035308]
  32. J Transl Med. 2021 Aug 16;19(1):351 [PMID: 34399766]
  33. J Alzheimers Dis. 2011;26(1):187-97 [PMID: 21593570]
  34. Transl Neurodegener. 2018 Jan 30;7:2 [PMID: 29423193]
  35. Appl Microbiol Biotechnol. 2020 May;104(9):3797-3805 [PMID: 32130470]
  36. Free Radic Biol Med. 2017 Nov;112:174-190 [PMID: 28756309]
  37. PLoS One. 2011;6(7):e21643 [PMID: 21779331]
  38. Synapse. 2012 Oct;66(10):870-9 [PMID: 22715045]
  39. Gut Microbes. 2020 Nov 9;12(1):1-19 [PMID: 33151120]
  40. Mol Neurobiol. 2018 Oct;55(10):7987-8000 [PMID: 29492848]
  41. Mol Nutr Food Res. 2015 Jun;59(6):1025-40 [PMID: 25689033]
  42. Nat Rev Neurosci. 2019 Mar;20(3):148-160 [PMID: 30737462]
  43. J Leukoc Biol. 2021 Dec;110(6):1005-1022 [PMID: 34494312]
  44. BMC Complement Altern Med. 2014 Jan 22;14:37 [PMID: 24447795]
  45. J Alzheimers Dis. 2019;70(2):399-412 [PMID: 31177213]
  46. J Alzheimers Dis. 2015;49(4):971-90 [PMID: 26519439]
  47. Front Aging Neurosci. 2020 Sep 11;12:560865 [PMID: 33024433]
  48. Emerg Microbes Infect. 2022 Dec;11(1):815-828 [PMID: 35191819]
  49. Neurochem Int. 2016 Oct;99:110-132 [PMID: 27346602]
  50. J Neurosci Res. 2008 May 15;86(7):1615-25 [PMID: 18189321]
  51. Sci Rep. 2017 Nov 1;7(1):14849 [PMID: 29093468]
  52. J Neurosci. 2003 Oct 15;23(28):9418-27 [PMID: 14561870]
  53. Anal Methods. 2021 Oct 14;13(39):4594-4603 [PMID: 34580678]
  54. Neurosci Biobehav Rev. 2017 Sep;80:316-328 [PMID: 28624434]
  55. Nutrients. 2019 May 07;11(5): [PMID: 31067776]
  56. Neuron. 2010 Jan 28;65(2):165-77 [PMID: 20152124]
  57. J Alzheimers Dis. 2017;60(4):1241-1257 [PMID: 29036812]
  58. Microb Cell Fact. 2020 Nov 7;19(1):203 [PMID: 33160356]
  59. Neurobiol Dis. 2019 Jul;127:264-277 [PMID: 30878533]
  60. Pharmacol Biochem Behav. 2012 Feb;100(4):656-64 [PMID: 21889952]
  61. Mol Med Rep. 2016 Feb;13(2):1611-7 [PMID: 26739187]
  62. J Neuroinflammation. 2019 Dec 13;16(1):264 [PMID: 31836020]
  63. Gut Microbes. 2020 Sep 2;11(5):1450-1474 [PMID: 32515683]
  64. J Clin Biochem Nutr. 2021 Mar;68(2):187-192 [PMID: 33879972]
  65. Gastroenterology. 2019 Oct;157(4):1093-1108.e11 [PMID: 31325428]
  66. J Appl Microbiol. 2019 Oct;127(4):954-967 [PMID: 30920075]
  67. Mol Brain. 2014 Sep 13;7:65 [PMID: 25213836]
  68. Biochim Biophys Acta. 2014 Dec;1842(12 Pt A):2395-402 [PMID: 25281826]
  69. Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5588-93 [PMID: 15809416]
  70. Trials. 2017 Jul 3;18(1):301 [PMID: 28673322]
  71. J Alzheimers Dis. 2020;73(3):849-865 [PMID: 31884474]
  72. Int J Genomics. 2018 Feb 11;2018:1361402 [PMID: 29607310]
  73. Cell Mol Biol (Noisy-le-grand). 2017 Apr 29;63(4):38-45 [PMID: 28478802]
  74. Int J Mol Sci. 2020 Apr 11;21(8): [PMID: 32290475]
  75. J Exp Med. 2019 Nov 4;216(11):2602-2618 [PMID: 31420376]
  76. Cell Host Microbe. 2019 May 8;25(5):681-694.e8 [PMID: 31006637]
  77. Curr Alzheimer Res. 2015;12(4):298-313 [PMID: 25731620]

Word Cloud

Created with Highcharts 10.0.0gutmicrobiotatreatmentmiceADEAPScDKOurinarymetabolitesmetabolomicelectroacupuncturecognitivedeficitsmicrobialcommunityadditiondifferentialdiseaseMGBaxisprofilingconditionaldoubleknockouteffectrecognitionanalysiscorrelationreversedmetabolomealteredincreasedglycinemetabolismsignificantlyAim:Alzheimer'sstillworldwideproblemdueunclearpathogenesislackeffectivetherapeutictargetsrecentyearsmicrobiomechangespatientsreceivedincreasingattentionmicrobiome-gut-brainproposednewhypothesisetiologyConsideringefficientlymoderatesmechanismsremainpoorlyunderstoodespeciallyregardingeffectsperformedEA-treatedmodelpresenilin1/2observefindconnectionaffectedMaterialsmethods:30daysmemoryabilityevaluatedYmazenovelobjecttaskUrinaryconducteduntargetedGC-MSmethod16SrRNAsequenceappliedanalyzeassociationclarifiedSpearman'scoefficientKeyfindings:resultNotablylevelisovalerylglycinedecreasedlevelsthreonicacidurineinvolvedglyoxylatedicarboxylatewellserinethreonineenhancingdiversityrichnessabundancegenusdisplayingremarkablemajorsignificantSignificance:ElectroacupuncturealleviatesmodulatingmightplayimportantroleunderlyingmechanismstudyprovidesreferencefutureEffectspresenilin1/2Alzheimer’smetabolomics

Similar Articles

Cited By