Unearthing soil-plant-microbiota crosstalk: Looking back to move forward.

Marco Giovannetti, Alessandra Salvioli di Fossalunga, Ioannis A Stringlis, Silvia Proietti, Valentina Fiorilli
Author Information
  1. Marco Giovannetti: Department of Biology, University of Padova, Padova, Italy.
  2. Alessandra Salvioli di Fossalunga: Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
  3. Ioannis A Stringlis: Plant - Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands.
  4. Silvia Proietti: Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
  5. Valentina Fiorilli: Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.

Abstract

The soil is vital for life on Earth and its biodiversity. However, being a non-renewable and threatened resource, preserving soil quality is crucial to maintain a range of ecosystem services critical to ecological balances, food production and human health. In an agricultural context, soil quality is often perceived as the ability to support field production, and thus soil quality and fertility are strictly interconnected. The concept of, as well as the ways to assess, soil fertility has undergone big changes over the years. Crop performance has been historically used as an indicator for soil quality and fertility. Then, analysis of a range of physico-chemical parameters has been used to routinely assess soil quality. Today it is becoming evident that soil quality must be evaluated by combining parameters that refer both to the physico-chemical and the biological levels. However, it can be challenging to find adequate indexes for evaluating soil quality that are both predictive and easy to measure . An ideal soil quality assessment method should be flexible, sensitive enough to detect changes in soil functions, management and climate, and should allow comparability among sites. In this review, we discuss the current of soil quality indicators and existing databases of harmonized, open-access topsoil data. We also explore the connections between soil biotic and abiotic features and crop performance in an agricultural context. Finally, based on current knowledge and technical advancements, we argue that the use of plant health traits represents a powerful way to assess soil physico-chemical and biological properties. These plant health parameters can serve as for different soil features that characterize soil quality both at the physico-chemical and at the microbiological level, including soil quality, fertility and composition of soil microbial communities.

Keywords

References

  1. Annu Rev Phytopathol. 2002;40:309-48 [PMID: 12147763]
  2. Philos Trans R Soc Lond B Biol Sci. 2013 May 27;368(1621):20130164 [PMID: 23713126]
  3. Sensors (Basel). 2019 Feb 17;19(4): [PMID: 30781552]
  4. Front Microbiol. 2018 Jul 23;9:1636 [PMID: 30083145]
  5. Sci Adv. 2019 Sep 25;5(9):eaaw0759 [PMID: 31579818]
  6. New Phytol. 2022 Jun;234(6):1951-1959 [PMID: 35118660]
  7. Philos Trans R Soc Lond B Biol Sci. 2008 Feb 27;363(1492):815-30 [PMID: 17761468]
  8. Sci Total Environ. 2019 Jan 15;648:1484-1491 [PMID: 30340293]
  9. Cells. 2022 Oct 17;11(20): [PMID: 36291121]
  10. Plants (Basel). 2020 Jul 30;9(8): [PMID: 32751534]
  11. Nat Plants. 2021 Aug;7(8):1065-1077 [PMID: 34294907]
  12. Plant Physiol. 2011 Jul;156(3):997-1005 [PMID: 21571668]
  13. J Plant Physiol. 2021 Aug;263:153464 [PMID: 34225177]
  14. Nat Rev Microbiol. 2013 Apr;11(4):252-63 [PMID: 23493145]
  15. New Phytol. 2018 Dec;220(4):1296-1308 [PMID: 29424928]
  16. Microorganisms. 2019 Aug 23;7(9): [PMID: 31450753]
  17. Plant J. 2022 Feb;109(3):508-522 [PMID: 34743401]
  18. Sensors (Basel). 2022 Jan 13;22(2): [PMID: 35062559]
  19. Cell Host Microbe. 2020 Dec 9;28(6):825-837.e6 [PMID: 33027611]
  20. Trends Plant Sci. 2023 Jan;28(1):18-30 [PMID: 36127241]
  21. Sci Data. 2020 Jan 13;7(1):16 [PMID: 31932586]
  22. Front Plant Sci. 2017 Sep 08;8:1532 [PMID: 28951735]
  23. Front Plant Sci. 2020 Jan 24;10:1741 [PMID: 32038698]
  24. Front Plant Sci. 2017 Feb 21;8:185 [PMID: 28270819]
  25. Nat Rev Chem. 2023 Jan;7(1):7-25 [PMID: 37117825]
  26. PLoS One. 2021 Feb 4;16(2):e0231063 [PMID: 33539339]
  27. Physiol Mol Biol Plants. 2021 Jan;27(1):165-179 [PMID: 33627969]
  28. Microbiome. 2018 Jun 11;6(1):106 [PMID: 29891000]
  29. Stress Biol. 2022 Jan 10;2(1):3 [PMID: 37676341]
  30. Curr Opin Biotechnol. 2015 Apr;32:93-98 [PMID: 25448235]
  31. Science. 2016 Jun 17;352(6292):1392-3 [PMID: 27313024]
  32. J Exp Bot. 2019 Nov 18;70(21):6019-6034 [PMID: 31504740]
  33. New Phytol. 2020 Mar;225(5):1899-1905 [PMID: 31571220]
  34. New Phytol. 2015 Mar;205(4):1385-1388 [PMID: 25231111]
  35. Funct Plant Biol. 2002 May;29(5):537-546 [PMID: 32689499]
  36. Nat Rev Microbiol. 2012 Dec;10(12):828-40 [PMID: 23154261]
  37. New Phytol. 2018 Dec;220(4):1031-1046 [PMID: 29806959]
  38. Nat Rev Microbiol. 2020 Jan;18(1):35-46 [PMID: 31586158]
  39. Front Plant Sci. 2022 Aug 26;13:919243 [PMID: 36092392]
  40. Curr Genomics. 2020 Aug;21(5):343-362 [PMID: 33093798]
  41. Nat Rev Microbiol. 2023 Jan;21(1):6-20 [PMID: 35999468]
  42. Nat Ecol Evol. 2022 Aug;6(8):1145-1154 [PMID: 35798840]
  43. Curr Opin Biotechnol. 2022 Feb;73:135-142 [PMID: 34392234]
  44. Genes (Basel). 2019 Jun 21;10(6): [PMID: 31234458]
  45. BMC Plant Biol. 2016 Oct 4;16(1):214 [PMID: 27716103]
  46. J Plant Physiol. 2021 Aug;263:153451 [PMID: 34119743]
  47. Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5213-E5222 [PMID: 29686086]
  48. Nat Rev Earth Environ. 2020 Oct;1(10):544-553 [PMID: 33015639]
  49. Sci Total Environ. 2022 Jun 20;826:153908 [PMID: 35183641]
  50. Plants (Basel). 2022 Apr 19;11(9): [PMID: 35567101]
  51. Plant Cell Environ. 2021 Jun;44(6):1946-1960 [PMID: 33675052]
  52. Nat Commun. 2021 May 28;12(1):3209 [PMID: 34050180]
  53. Microbiome. 2020 Jun 30;8(1):103 [PMID: 32605663]
  54. Trends Plant Sci. 2018 Dec;23(12):1057-1067 [PMID: 30287162]
  55. Plants (Basel). 2020 Aug 27;9(9): [PMID: 32867243]
  56. Nat Rev Microbiol. 2020 Nov;18(11):607-621 [PMID: 32788714]
  57. Science. 2021 Jan 15;371(6526):239-241 [PMID: 33446546]

Word Cloud

Created with Highcharts 10.0.0soilqualityhealthfertilityphysico-chemicalassessparametersplantHoweverrangeproductionagriculturalcontextchangesperformanceusedbiologicalcancurrentindicatorsfeaturesvitallifeEarthbiodiversitynon-renewablethreatenedresourcepreservingcrucialmaintainecosystemservicescriticalecologicalbalancesfoodhumanoftenperceivedabilitysupportfieldthusstrictlyinterconnectedconceptwellwaysundergonebigyearsCrophistoricallyindicatoranalysisroutinelyTodaybecomingevidentmustevaluatedcombiningreferlevelschallengingfindadequateindexesevaluatingpredictiveeasymeasureidealassessmentmethodflexiblesensitiveenoughdetectfunctionsmanagementclimateallowcomparabilityamongsitesreviewdiscussexistingdatabasesharmonizedopen-accesstopsoildataalsoexploreconnectionsbioticabioticcropFinallybasedknowledgetechnicaladvancementsargueusetraitsrepresentspowerfulwaypropertiesservedifferentcharacterizemicrobiologicallevelincludingcompositionmicrobialcommunitiesUnearthingsoil-plant-microbiotacrosstalk:Lookingbackmoveforwardmicrobiomedatabasesoil-microbe-plantsystem

Similar Articles

Cited By