Complex motion of Greenland Ice Sheet outlet glaciers with basal temperate ice.

Robert Law, Poul Christoffersen, Emma MacKie, Samuel Cook, Marianne Haseloff, Olivier Gagliardini
Author Information
  1. Robert Law: Scott Polar Research Institute, University of Cambridge, Cambridge, UK. ORCID
  2. Poul Christoffersen: Scott Polar Research Institute, University of Cambridge, Cambridge, UK. ORCID
  3. Emma MacKie: Department of Geological Sciences, University of Florida, Gainesville, FL, USA.
  4. Samuel Cook: Institute of Earth Surface Dynamics, Université de Lausanne, Lausanne, Switzerland. ORCID
  5. Marianne Haseloff: Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA. ORCID
  6. Olivier Gagliardini: CNRS, IRD, Grenoble INP, IGE, Université Grenoble Alpes, Grenoble, France. ORCID

Abstract

Uncertainty associated with ice sheet motion plagues sea level rise predictions. Much of this uncertainty arises from imperfect representations of physical processes including basal slip and internal ice deformation, with ice sheet models largely incapable of reproducing borehole-based observations. Here, we model isolated three-dimensional domains from fast-moving (Sermeq Kujalleq/Store Glacier) and slow-moving (Isunnguata Sermia) ice sheet settings in Greenland. By incorporating realistic geostatistically simulated topography, we show that a spatially highly variable layer of temperate ice (much softer ice at the pressure-melting point) forms naturally in both settings, alongside ice motion patterns which diverge substantially from those obtained using smoothly varying BedMachine topography. Temperate ice is vertically extensive (>100 meters) in deep troughs but thins notably (<5 meters) over bedrock highs, with basal slip rates reaching >90 or <5% of surface velocity dependent on topography and temperate layer thickness. Developing parameterizations of the net effect of this complex motion can improve the realism of predictive ice sheet models.

References

  1. Curr Clim Change Rep. 2017;3(4):291-302 [PMID: 32010550]
  2. Nature. 2010 Sep 30;467(7315):579-82 [PMID: 20882014]
  3. J Geophys Res Earth Surf. 2016 Aug 10;121(7):1328-1350 [PMID: 28163988]
  4. Nat Commun. 2016 Feb 01;7:10524 [PMID: 26830316]
  5. Proc Natl Acad Sci U S A. 2019 May 7;116(19):9239-9244 [PMID: 31010924]
  6. Sci Adv. 2021 May 14;7(20): [PMID: 33990323]
  7. Science. 2020 Apr 3;368(6486):76-78 [PMID: 32241945]
  8. Sci Adv. 2021 May 14;7(20): [PMID: 33990322]
  9. Nat Commun. 2020 Dec 15;11(1):6289 [PMID: 33323939]
  10. Geophys Res Lett. 2019 May 16;46(9):4764-4771 [PMID: 31244498]
  11. Geophys Res Lett. 2017 Nov 16;44(21):11051-11061 [PMID: 29263561]
  12. Sci Adv. 2019 Jul 10;5(7):eaaw5406 [PMID: 31309154]

Word Cloud

Created with Highcharts 10.0.0icesheetmotionbasaltopographytemperateslipmodelssettingsGreenlandlayerUncertaintyassociatedplaguessealevelrisepredictionsMuchuncertaintyarisesimperfectrepresentationsphysicalprocessesincludinginternaldeformationlargelyincapablereproducingborehole-basedobservationsmodelisolatedthree-dimensionaldomainsfast-movingSermeqKujalleq/StoreGlacierslow-movingIsunnguataSermiaincorporatingrealisticgeostatisticallysimulatedshowspatiallyhighlyvariablemuchsofterpressure-meltingpointformsnaturallyalongsidepatternsdivergesubstantiallyobtainedusingsmoothlyvaryingBedMachineTemperateverticallyextensive>100 metersdeeptroughsthinsnotably<5 metersbedrockhighsratesreaching>90or <5%surfacevelocitydependentthicknessDevelopingparameterizationsneteffectcomplexcanimproverealismpredictiveComplexIceSheetoutletglaciers

Similar Articles

Cited By