Role of Ensemble Deep Learning for Brain Tumor Classification in Multiple Magnetic Resonance Imaging Sequence Data.

Gopal S Tandel, Ashish Tiwari, Omprakash G Kakde, Neha Gupta, Luca Saba, Jasjit S Suri
Author Information
  1. Gopal S Tandel: School of Computer Science and Engineering, VIT Bhopal University, Sehore 466114, India. ORCID
  2. Ashish Tiwari: Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
  3. Omprakash G Kakde: Indian Institute of Information Technology, Nagpur 441108, India. ORCID
  4. Neha Gupta: IT Department, Bharati Vidyapeeth's College of Engineering, New Delhi 110063, India.
  5. Luca Saba: Department of Radiology, University of Cagliari, 09124 Cagliari, Italy.
  6. Jasjit S Suri: Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA.

Abstract

The biopsy is a gold standard method for tumor grading. However, due to its invasive nature, it has sometimes proved fatal for brain tumor patients. As a result, a non-invasive computer-aided diagnosis (CAD) tool is required. Recently, many magnetic resonance imaging (MRI)-based CAD tools have been proposed for brain tumor grading. The MRI has several sequences, which can express tumor structure in different ways. However, a suitable MRI sequence for brain tumor classification is not yet known. The most common brain tumor is 'glioma', which is the most fatal form. Therefore, in the proposed study, to maximize the classification ability between low-grade versus high-grade glioma, three datasets were designed comprising three MRI sequences: T1-Weighted (T1W), T2-weighted (T2W), and fluid-attenuated inversion recovery (FLAIR). Further, five well-established convolutional neural networks, AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50 were adopted for tumor classification. An ensemble algorithm was proposed using the majority vote of above five deep learning (DL) models to produce more consistent and improved results than any individual model. Five-fold cross validation (K5-CV) protocol was adopted for training and testing. For the proposed ensembled classifier with K5-CV, the highest test accuracies of 98.88 ± 0.63%, 97.98 ± 0.86%, and 94.75 ± 0.61% were achieved for FLAIR, T2W, and T1W-MRI data, respectively. FLAIR-MRI data was found to be most significant for brain tumor classification, where it showed a 4.17% and 0.91% improvement in accuracy against the T1W-MRI and T2W-MRI sequence data, respectively. The proposed ensembled algorithm (MajVot) showed significant improvements in the average accuracy of three datasets of 3.60%, 2.84%, 1.64%, 4.27%, and 1.14%, respectively, against AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50.

Keywords

References

  1. J Digit Imaging. 2013 Dec;26(6):1045-57 [PMID: 23884657]
  2. Comput Intell Neurosci. 2019 Jun 3;2019:4629859 [PMID: 31281335]
  3. J Am Acad Dermatol. 2021 Aug;85(2):e71-e72 [PMID: 29894703]
  4. Comput Biol Med. 2020 Sep;124:103960 [PMID: 32919186]
  5. Neurosurgery. 2017 Sep 1;81(3):397-415 [PMID: 28486641]
  6. Neuroimage Clin. 2017 Jun 13;15:633-643 [PMID: 28664034]
  7. Interdiscip Sci. 2022 Jun;14(2):485-502 [PMID: 35137330]
  8. J Med Syst. 2017 Jun;41(6):98 [PMID: 28501967]
  9. Cancers (Basel). 2019 Jan 18;11(1): [PMID: 30669406]
  10. Med Phys. 2019 Feb;46(2):756-765 [PMID: 30597561]
  11. J Med Syst. 2018 Apr 10;42(5):92 [PMID: 29637403]
  12. Technol Cancer Res Treat. 2012 Dec;11(6):543-52 [PMID: 22775335]
  13. Diagnostics (Basel). 2022 Mar 07;12(3): [PMID: 35328205]
  14. IEEE Rev Biomed Eng. 2009;2:147-71 [PMID: 20671804]
  15. Breast. 2017 Feb;31:157-166 [PMID: 27866091]
  16. Comput Biol Med. 2021 Aug;135:104564 [PMID: 34217980]
  17. J Healthc Eng. 2022 Mar 8;2022:3264367 [PMID: 35299683]
  18. Comput Math Methods Med. 2022 Aug 5;2022:6446680 [PMID: 36035291]
  19. Am Surg. 2020 Sep;86(9):1088-1090 [PMID: 32816560]
  20. Med Phys. 2018 Mar;45(3):1150-1158 [PMID: 29356028]
  21. Ing Rech Biomed. 2022 Apr;43(2):114-119 [PMID: 32837679]
  22. Comput Methods Programs Biomed. 2020 Aug;192:105400 [PMID: 32179311]
  23. Comput Med Imaging Graph. 2019 Jul;75:34-46 [PMID: 31150950]
  24. Int J Cardiovasc Imaging. 2021 May;37(5):1511-1528 [PMID: 33423132]
  25. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  26. IEEE Trans Med Imaging. 2016 May;35(5):1299-1312 [PMID: 26978662]
  27. Front Neurosci. 2018 Nov 15;12:804 [PMID: 30498429]
  28. Radiographics. 2017 Mar-Apr;37(2):505-515 [PMID: 28212054]
  29. Ultrasonics. 2012 Apr;52(4):508-20 [PMID: 22154208]
  30. Comput Biol Med. 2021 Jan;128:104115 [PMID: 33227578]
  31. PLoS One. 2013 Jul 29;8(7):e70221 [PMID: 23922958]
  32. Diagnostics (Basel). 2022 Jul 24;12(8): [PMID: 35892504]
  33. Acta Cytol. 2019;63(6):449-455 [PMID: 31091522]
  34. Brain Sci. 2020 Feb 22;10(2): [PMID: 32098333]
  35. Semin Nucl Med. 1983 Oct;13(4):329-38 [PMID: 6648538]
  36. Comput Methods Programs Biomed. 2017 Oct;150:9-22 [PMID: 28859832]
  37. Clin Radiol. 2020 May;75(5):351-357 [PMID: 31973941]
  38. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4446-9 [PMID: 23366914]
  39. Eur J Radiol. 2016 Apr;85(4):824-9 [PMID: 26971430]
  40. Artif Intell Med. 2014 Nov;62(3):165-77 [PMID: 25455561]
  41. Diagnostics (Basel). 2021 Dec 13;11(12): [PMID: 34943580]
  42. Phys Med Biol. 2013 Jul 7;58(13):R97-129 [PMID: 23743802]
  43. Comput Intell Neurosci. 2022 Mar 26;2022:7897669 [PMID: 35378808]
  44. Med Phys. 2012 Jul;39(7):4255-64 [PMID: 22830759]
  45. AJNR Am J Neuroradiol. 2006 Mar;27(3):475-87 [PMID: 16551981]
  46. J Diabetes Sci Technol. 2018 Mar;12(2):295-302 [PMID: 28494618]
  47. J Med Syst. 2017 Aug 23;41(10):152 [PMID: 28836045]
  48. J Med Eng. 2015;2015:457906 [PMID: 27006938]
  49. Cancer. 2022 Jan 1;128(1):47-58 [PMID: 34633681]
  50. AJNR Am J Neuroradiol. 2018 Jul;39(7):1201-1207 [PMID: 29748206]
  51. IEEE Trans Med Imaging. 2016 May;35(5):1240-1251 [PMID: 26960222]
  52. Technol Cancer Res Treat. 2011 Aug;10(4):371-80 [PMID: 21728394]
  53. Comput Biol Med. 2020 Jul;122:103804 [PMID: 32658726]
  54. Diagnostics (Basel). 2022 Jul 31;12(8): [PMID: 36010200]
  55. Comput Methods Programs Biomed. 2016 May;128:137-58 [PMID: 27040838]
  56. Biomed Eng Lett. 2017 Aug 31;8(1):41-57 [PMID: 30603189]
  57. Sci Rep. 2021 Jul 28;11(1):15307 [PMID: 34321514]
  58. Technol Cancer Res Treat. 2013 Dec;12(6):545-57 [PMID: 23745787]
  59. Comput Med Imaging Graph. 2017 Nov;61:2-13 [PMID: 28676295]
  60. Med Image Anal. 2017 Jan;35:18-31 [PMID: 27310171]
  61. AJNR Am J Neuroradiol. 2018 Feb;39(2):208-216 [PMID: 28982791]
  62. J Natl Compr Canc Netw. 2014 Nov;12(11):1561-8 [PMID: 25361803]
  63. Comput Methods Programs Biomed. 2019 Apr;172:35-51 [PMID: 30902126]
  64. Med Image Anal. 2017 Dec;42:60-88 [PMID: 28778026]
  65. Brain Imaging Behav. 2022 Jun;16(3):1410-1427 [PMID: 35048264]
  66. J Med Syst. 2022 Aug 21;46(10):62 [PMID: 35988110]
  67. BMC Bioinformatics. 2017 May 26;18(1):281 [PMID: 28549410]
  68. J Med Imaging (Bellingham). 2019 Oct;6(4):046003 [PMID: 31824982]
  69. Eur J Radiol. 2019 May;114:14-24 [PMID: 31005165]
  70. J Clin Endocrinol Metab. 2021 Mar 8;106(3):e1191-e1205 [PMID: 33351102]
  71. Front Biosci (Landmark Ed). 2019 Jan 1;24(3):392-426 [PMID: 30468663]
  72. Comput Methods Programs Biomed. 2018 Mar;155:165-177 [PMID: 29512496]
  73. J Digit Imaging. 2013 Jun;26(3):544-53 [PMID: 23160866]
  74. Clin Orthop Relat Res. 1993 Apr;(289):32-5 [PMID: 8472430]
  75. Insights Imaging. 2018 Aug;9(4):611-629 [PMID: 29934920]
  76. Pediatr Radiol. 2007 Aug;37(8):789-97 [PMID: 17487479]
  77. AJNR Am J Neuroradiol. 2018 Oct;39(10):1776-1784 [PMID: 29419402]
  78. PLoS One. 2018 Jul 27;13(7):e0200721 [PMID: 30052644]
  79. Endoscopy. 1995 Nov;27(9):683-8 [PMID: 8903983]
  80. Diagnostics (Basel). 2022 Sep 02;12(9): [PMID: 36140533]

Word Cloud

Created with Highcharts 10.0.0tumorbrainproposedclassificationMRI0threelearning±datarespectivelygradingHoweverfatalcomputer-aideddiagnosisCADmagneticresonanceimagingsequencedatasetsT2WFLAIRfiveAlexNetVGG16ResNet18GoogleNetResNet50adoptedalgorithmdeepK5-CVensembled98T1W-MRIsignificantshowed4accuracy1biopsygoldstandardmethoddueinvasivenaturesometimesprovedpatientsresultnon-invasivetoolrequiredRecentlymany-basedtoolsseveralsequencescanexpressstructuredifferentwayssuitableyetknowncommon'glioma'formThereforestudymaximizeabilitylow-gradeversushigh-gradegliomadesignedcomprisingsequences:T1-WeightedT1WT2-weightedfluid-attenuatedinversionrecoverywell-establishedconvolutionalneuralnetworksensembleusingmajorityvoteDLmodelsproduceconsistentimprovedresultsindividualmodelFive-foldcrossvalidationprotocoltrainingtestingclassifierhighesttestaccuracies8863%9786%947561%achievedFLAIR-MRIfound17%91%improvementT2W-MRIMajVotimprovementsaverage360%284%64%27%14%RoleEnsembleDeepLearningBrainTumorClassificationMultipleMagneticResonanceImagingSequenceDatatransfer

Similar Articles

Cited By