Single-Cell Transcriptomics Analysis Reveals a Cell Atlas and Cell Communication in Yak Ovary.

Jie Pei, Lin Xiong, Shaoke Guo, Xingdong Wang, Yongfu La, Min Chu, Chunnian Liang, Ping Yan, Xian Guo
Author Information
  1. Jie Pei: Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China. ORCID
  2. Lin Xiong: Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
  3. Shaoke Guo: Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
  4. Xingdong Wang: Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China. ORCID
  5. Yongfu La: Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
  6. Min Chu: Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
  7. Chunnian Liang: Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
  8. Ping Yan: Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
  9. Xian Guo: Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China. ORCID

Abstract

Yaks () are the only bovine species that adapt well to the harsh high-altitude environment in the Qinghai-Tibetan plateau. However, the reproductive adaptation to the climate of the high elevation remains to be elucidated. Cell composition and molecular characteristics are the foundation of normal ovary function which determines reproductive performance. So, delineating ovarian characteristics at a cellular molecular level is conducive to elucidating the mechanism underlying the reproductive adaption of yaks. Here, the single-cell RNA-sequencing (scRNA-seq) was employed to depict an atlas containing different cell types with specific molecular signatures in the yak ovary. The cell types were identified on the basis of their specifically expressed genes and biological functions. As a result, a cellular atlas of yak ovary was established successfully containing theca cells, stromal cells, endothelial cells, smooth muscle cells, natural killer cells, macrophages, and proliferating cells. A cell-to-cell communication network between the distinct cell types was constructed. The theca cells were clustered into five subtypes based on their biological functions. Further, CYP11A1 was confirmed as a marker gene for the theca cells by immunofluorescence staining. Our work reveals an ovarian atlas at the cellular molecular level and contributes to providing insights into reproductive adaption in yaks.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2021 May 18;118(20): [PMID: 33980714]
  2. Endocrinology. 2017 Jan 1;158(1):134-147 [PMID: 27819761]
  3. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  4. Annu Rev Physiol. 1997;59:349-63 [PMID: 9074768]
  5. BMC Genomics. 2014 Jan 28;15:72 [PMID: 24467805]
  6. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  7. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  8. Elife. 2022 Oct 07;11: [PMID: 36205477]
  9. Cell Discov. 2020 Dec 29;6(1):97 [PMID: 33372178]
  10. Mol Cell Endocrinol. 2012 Jun 5;356(1-2):65-73 [PMID: 22101318]
  11. Fertil Steril. 2017 Oct;108(4):594-595 [PMID: 28893385]
  12. Front Cell Dev Biol. 2021 Mar 29;9:647892 [PMID: 33855024]
  13. Semin Cell Dev Biol. 2015 Sep;45:68-76 [PMID: 26454098]
  14. Endocr Rev. 2015 Feb;36(1):1-24 [PMID: 25202833]
  15. J Genet Genomics. 2020 Apr 20;47(4):175-186 [PMID: 32487456]
  16. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  17. J Cell Physiol. 2008 Aug;216(2):355-65 [PMID: 18452183]
  18. Nat Commun. 2020 Mar 2;11(1):1147 [PMID: 32123174]
  19. Nat Methods. 2017 Oct;14(10):979-982 [PMID: 28825705]
  20. Fertil Steril. 2019 Jan;111(1):86-96 [PMID: 30477915]
  21. Int J Mol Sci. 2022 Jun 04;23(11): [PMID: 35682981]
  22. Front Endocrinol (Lausanne). 2022 Apr 28;13:894437 [PMID: 35573990]
  23. J Cell Mol Med. 2021 Mar;25(6):2851-2860 [PMID: 33599396]
  24. Elife. 2022 May 19;11: [PMID: 35588359]
  25. Nat Med. 2015 Oct;21(10):1116-8 [PMID: 26444631]
  26. Cell Rep. 2020 Aug 11;32(6):108027 [PMID: 32783948]
  27. Reproduction. 2010 Oct;140(4):489-504 [PMID: 20628033]
  28. BMC Res Notes. 2014 Jun 20;7:378 [PMID: 24947985]
  29. PLoS Biol. 2020 Apr 27;18(4):e3000538 [PMID: 32339165]
  30. PLoS Biol. 2020 Dec 22;18(12):e3001025 [PMID: 33351795]
  31. Cell. 2020 Feb 6;180(3):585-600.e19 [PMID: 32004457]
  32. Nat Commun. 2019 Jul 18;10(1):3164 [PMID: 31320652]
  33. Crit Rev Food Sci Nutr. 2014;54(3):292-302 [PMID: 24188303]
  34. J Adolesc Young Adult Oncol. 2018 Feb;7(1):46-53 [PMID: 28846463]
  35. Hum Reprod. 2009 May;24(5):1142-51 [PMID: 19189992]
  36. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9585-90 [PMID: 10920202]
  37. Dtsch Tierarztl Wochenschr. 1996 Aug-Sep;103(8-9):348-53 [PMID: 9011505]
  38. Hum Reprod Update. 2016 Nov;22(6):709-724 [PMID: 27566840]
  39. Sci Rep. 2016 Jun 15;6:27991 [PMID: 27301892]
  40. Hum Reprod Update. 2005 Sep-Oct;11(5):461-71 [PMID: 16006439]
  41. Cell Stem Cell. 2017 Jun 1;20(6):858-873.e4 [PMID: 28457750]
  42. J Ovarian Res. 2009 Nov 16;2(1):17 [PMID: 19917087]
  43. Trends Endocrinol Metab. 2002 May-Jun;13(4):169-73 [PMID: 11943561]
  44. Anim Sci J. 2016 Jul;87(7):947-58 [PMID: 26470629]
  45. Cell Death Dis. 2021 Apr 12;12(4):388 [PMID: 33846307]
  46. J Ovarian Res. 2021 Aug 6;14(1):102 [PMID: 34362406]
  47. Hum Reprod Update. 2014 May-Jun;20(3):353-69 [PMID: 24287894]
  48. Ann Endocrinol (Paris). 2010 May;71(3):132-43 [PMID: 20362973]
  49. Nat Med. 2015 Oct;21(10):1114-6 [PMID: 26444630]
  50. Theriogenology. 2003 Mar;59(5-6):1303-12 [PMID: 12527077]
  51. FASEB J. 2002 Sep;16(11):1389-97 [PMID: 12205030]
  52. Nat Commun. 2020 Nov 6;11(1):5628 [PMID: 33159074]
  53. Int J Biol Sci. 2019 Jan 1;15(2):404-415 [PMID: 30745830]
  54. Nat Protoc. 2020 Apr;15(4):1484-1506 [PMID: 32103204]
  55. Biomed Res Int. 2015;2015:196904 [PMID: 26380264]
  56. PLoS One. 2014 Oct 16;9(10):e110683 [PMID: 25330369]

Grants

  1. 32272852/National Natural Science Foundation of China
  2. CARS-37/China Agriculture Research System of MOF and MARA
  3. 25-LZIHPS-01/Innovation Project of Chinese Academy of Agricultural Sciences

MeSH Term

Female
Cattle
Animals
Transcriptome
Ovary
Endothelial Cells
Environment
Adaptation, Physiological

Word Cloud

Created with Highcharts 10.0.0cellscellreproductivemolecularovarycellularatlasthecaCelltypesyakcharacteristicsovarianleveladaptionyakssingle-cellcontainingbiologicalfunctionscommunicationYaksbovinespeciesadaptwellharshhigh-altitudeenvironmentQinghai-TibetanplateauHoweveradaptationclimatehighelevationremainselucidatedcompositionfoundationnormalfunctiondeterminesperformancedelineatingconduciveelucidatingmechanismunderlyingRNA-sequencingscRNA-seqemployeddepictdifferentspecificsignaturesidentifiedbasisspecificallyexpressedgenesresultestablishedsuccessfullystromalendothelialsmoothmusclenaturalkillermacrophagesproliferatingcell-to-cellnetworkdistinctconstructedclusteredfivesubtypesbasedCYP11A1confirmedmarkergeneimmunofluorescencestainingworkrevealscontributesprovidinginsightsSingle-CellTranscriptomicsAnalysisRevealsAtlasCommunicationYakOvary

Similar Articles

Cited By