Cabotegravir Exposure of Zebrafish () Embryos Impacts on Neurodevelopment and Behavior.

Daniela Zizioli, Isabella Zanella, Luca Mignani, Melania Degli Antoni, Francesco Castelli, Eugenia Quiros-Roldan
Author Information
  1. Daniela Zizioli: Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
  2. Isabella Zanella: Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy. ORCID
  3. Luca Mignani: Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy. ORCID
  4. Melania Degli Antoni: Division of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy.
  5. Francesco Castelli: Division of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy.
  6. Eugenia Quiros-Roldan: Division of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy. ORCID

Abstract

As most new medications, Cabotegravir (CAB) was recently approved as an antiretroviral treatment of HIV infection without in-depth safety information on in utero exposure. Although no developmental toxicity in rats and rabbits was reported, recent studies demonstrated that CAB decreases pluripotency of human embryonic stem cells. CAB exposure effects during development were assessed in zebrafish embryos by the Fish Embryo Toxicity test after exposure at subtherapeutic concentrations up to 25× the human C. Larvae behavior was assessed by the light-dark locomotion test. The expression of factors involved in neurogenesis was evaluated by whole-mount in situ hybridization. CAB did not cause gross morphological defects at low doses, although pericardial edema, uninflated swim bladder, decreased heartbeats, growth delay, and decreased hatching rate were observed at the highest concentrations. Decreased locomotion was observed even at the subtherapeutic dose, suggesting alterations of nervous system integrity. This hypothesis was supported by the observation of decreased expression of crucial factors involved in early neuronal differentiation in diencephalic and telencephalic dopaminergic areas, midbrain/hindbrain boundary, and craniofacial ganglia. These findings support CAB effects on neurogenesis in zebrafish embryos and suggest long-term follow-up of exposed infants to provide data on drug safety during pregnancy.

Keywords

References

  1. Pharmaceuticals (Basel). 2022 Dec 09;15(12): [PMID: 36558984]
  2. Dev Dyn. 1998 Sep;213(1):92-104 [PMID: 9733104]
  3. EBioMedicine. 2021 Jan;63:103167 [PMID: 33341441]
  4. N Engl J Med. 2019 Aug 29;381(9):827-840 [PMID: 31329379]
  5. HIV AIDS (Auckl). 2016 Oct 14;8:157-164 [PMID: 27799824]
  6. AIDS. 2020 Jul 15;34(9):1377-1387 [PMID: 32310900]
  7. IUBMB Life. 2007 Apr-May;59(4-5):299-307 [PMID: 17505969]
  8. HIV Med. 2022 Nov 21;: [PMID: 36411596]
  9. EBioMedicine. 2022 Jan;75:103771 [PMID: 34954655]
  10. AIDS. 2020 Nov 15;34(14):2145-2149 [PMID: 32796211]
  11. Xenobiotica. 2016;46(5):445-56 [PMID: 26340566]
  12. J Infect Dis. 2022 Nov 28;226(11):1992-2001 [PMID: 36124861]
  13. Toxicol Sci. 2021 Nov 24;184(2):191-203 [PMID: 34515794]
  14. AIDS. 2019 Nov 1;33(13):1967-1976 [PMID: 31259764]
  15. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5143-8 [PMID: 16549779]
  16. J Acquir Immune Defic Syndr. 2019 Aug 1;81(4):371-378 [PMID: 30939532]
  17. Biomedicines. 2019 Mar 26;7(1): [PMID: 30917585]
  18. Pharmaceutics. 2022 Aug 24;14(9): [PMID: 36145509]
  19. Congenit Anom (Kyoto). 2016 Jan;56(1):18-27 [PMID: 26537640]
  20. Mol Neurobiol. 2021 Nov;58(11):5703-5721 [PMID: 34390469]
  21. Dev Dyn. 1995 Jul;203(3):253-310 [PMID: 8589427]
  22. N Engl J Med. 2018 Sep 6;379(10):979-981 [PMID: 30037297]
  23. BMC Pharmacol Toxicol. 2017 Nov 15;18(1):72 [PMID: 29141695]
  24. Birth Defects Res. 2022 Nov 14;: [PMID: 36373861]
  25. J Neurosci Res. 2007 Oct;85(13):2813-23 [PMID: 17387691]
  26. Lancet HIV. 2021 Jan;8(1):e33-e41 [PMID: 33387477]
  27. Neural Regen Res. 2016 Mar;11(3):357-62 [PMID: 27127457]
  28. Dev Biol. 2002 Nov 1;251(1):45-58 [PMID: 12413897]
  29. Drug Metab Dispos. 2013 Feb;41(2):353-61 [PMID: 23132334]
  30. Biochim Biophys Acta. 2014 Apr;1842(4):665-75 [PMID: 24463171]
  31. Nature. 2013 Apr 25;496(7446):498-503 [PMID: 23594743]

Grants

  1. ex 60%/University of Brescia

MeSH Term

Humans
Animals
Rabbits
Rats
Zebrafish
Embryo, Nonmammalian
HIV Infections
Heart Rate
Larva
Water Pollutants, Chemical

Chemicals

cabotegravir
Water Pollutants, Chemical

Word Cloud

Created with Highcharts 10.0.0CABexposurezebrafishdecreasedCabotegravirsafetydevelopmentaltoxicityhumaneffectsassessedembryostestsubtherapeuticconcentrationslocomotionexpressionfactorsinvolvedneurogenesisobservedpregnancynewmedicationsrecentlyapprovedantiretroviraltreatmentHIVinfectionwithoutin-depthinformationuteroAlthoughratsrabbitsreportedrecentstudiesdemonstrateddecreasespluripotencyembryonicstemcellsdevelopmentFishEmbryoToxicity25×CLarvaebehaviorlight-darkevaluatedwhole-mountsituhybridizationcausegrossmorphologicaldefectslowdosesalthoughpericardialedemauninflatedswimbladderheartbeatsgrowthdelayhatchingratehighestDecreasedevendosesuggestingalterationsnervoussystemintegrityhypothesissupportedobservationcrucialearlyneuronaldifferentiationdiencephalictelencephalicdopaminergicareasmidbrain/hindbrainboundarycraniofacialgangliafindingssupportsuggestlong-termfollow-upexposedinfantsprovidedatadrugExposureZebrafishEmbryosImpactsNeurodevelopmentBehaviorINSTIcabotegravirdolutegravirintegraseinhibitorembryo

Similar Articles

Cited By