Assessment of Inflammation in 3D Reconstructed Human Skin Exposed to Combined Exposure to Ultraviolet and Wi-Fi Radiation.

Zsófia Szilágyi, Zsuzsanna Németh, József Bakos, Györgyi Kubinyi, Péter Pál Necz, Erika Szabó, György Thuróczy, Rosanna Pinto, Brahim Selmaoui
Author Information
  1. Zsófia Szilágyi: Non-Ionizing Radiation Unit, National Public Health Center, H-1221 Budapest, Hungary. ORCID
  2. Zsuzsanna Németh: Non-Ionizing Radiation Unit, National Public Health Center, H-1221 Budapest, Hungary.
  3. József Bakos: Non-Ionizing Radiation Unit, National Public Health Center, H-1221 Budapest, Hungary.
  4. Györgyi Kubinyi: Non-Ionizing Radiation Unit, National Public Health Center, H-1221 Budapest, Hungary.
  5. Péter Pál Necz: Non-Ionizing Radiation Unit, National Public Health Center, H-1221 Budapest, Hungary.
  6. Erika Szabó: Non-Ionizing Radiation Unit, National Public Health Center, H-1221 Budapest, Hungary.
  7. György Thuróczy: Non-Ionizing Radiation Unit, National Public Health Center, H-1221 Budapest, Hungary.
  8. Rosanna Pinto: Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Santa Maria di Galeria, 00123 Rome, Italy.
  9. Brahim Selmaoui: Department of Experimental Toxicology, National Institute of Industrial Environment and Risks (INERIS), 60550 Verneuil en Halatte, France. ORCID

Abstract

In the human environment, the increasing exposure to radiofrequency (RF) radiation, especially that emitted by wireless devices, could be absorbed in the body. Recently, mobile and emerging wireless technologies (UMTS, DECT, LTE, and Wi-Fi) have been using higher frequencies than 2G GSM systems (900/1800 MHz), which means that most of the circulating RF currents are absorbed into the skin and the superficial soft tissue. The harmful genotoxic, cytotoxic, and mutagenic effects of solar ultraviolet (UV) radiation on the skin are well-known. This study aimed at investigating whether 2422 MHz (Wi-Fi) RF exposure combined with UV radiation in different sequences has any effect on the inflammation process in the skin. In vitro experiments examined the inflammation process by cytokines (IL-1α, IL-6, IL-8) and MMP-1 enzyme secretion in a 3D full-thickness human skin model. In the first study, UV exposure was immediately followed by RF exposure to measure the potential additive effects, while in the second study, the possible protective phenomenon (i.e., adaptive response) was investigated when adaptive RF exposure was challenged by UV radiation. Our results suggest that 2422 MHz Wi-Fi exposure slightly, not significantly increased cytokine concentrations of the prior UV exposure. We could not detect the adaptive response phenomenon.

Keywords

References

  1. Radiat Res. 2009 Jun;171(6):735-42 [PMID: 19580480]
  2. Br J Dermatol. 2008 Jun;158(6):1189-96 [PMID: 18410412]
  3. Biomed Res Int. 2015;2015:289152 [PMID: 26180791]
  4. J Biol Chem. 2004 Jan 16;279(3):1676-83 [PMID: 14581488]
  5. Mutat Res. 2005 Apr 1;571(1-2):107-20 [PMID: 15748642]
  6. Photodermatol Photoimmunol Photomed. 1996 Oct-Dec;11(5-6):192-7 [PMID: 8738713]
  7. Bioelectromagnetics. 2004 Feb;25(2):127-33 [PMID: 14735563]
  8. Mutagenesis. 2011 Jan;26(1):177-84 [PMID: 21164200]
  9. J Photochem Photobiol B. 2001 Oct;63(1-3):61-9 [PMID: 11684452]
  10. Int J Environ Res Public Health. 2020 Jun 19;17(12): [PMID: 32575398]
  11. Electromagn Biol Med. 2016;35(3):265-301 [PMID: 27053138]
  12. Bioelectromagnetics. 2021 Jan;42(1):5-17 [PMID: 33238059]
  13. Toxicology. 2007 Apr 11;232(3):311-6 [PMID: 17336440]
  14. Genes (Basel). 2020 Mar 25;11(4): [PMID: 32218170]
  15. J Radiat Res. 2008 May;49(3):219-30 [PMID: 18296871]
  16. Mutat Res. 2005 Apr 1;571(1-2):153-73 [PMID: 15748645]
  17. J Invest Dermatol. 1995 Jul;105(1 Suppl):62S-66S [PMID: 7615999]
  18. Environ Res. 2019 Aug;175:274-286 [PMID: 31146099]
  19. Toxicol In Vitro. 2002 Oct;16(5):557-72 [PMID: 12206823]
  20. J Dermatol Sci. 2008 Jun;50(3):169-76 [PMID: 17920816]
  21. J Inflamm Res. 2015 Feb 23;8:59-69 [PMID: 25759595]
  22. Int J Mol Sci. 2020 Sep 25;21(19): [PMID: 32992895]
  23. Plast Reconstr Surg. 2016 Aug;138(2):248e-255e [PMID: 27465186]
  24. Mutat Res. 2009 Jun-Jul;677(1-2):100-4 [PMID: 19501185]
  25. Bioelectromagnetics. 2000 Oct;21(7):508-14 [PMID: 11015115]
  26. J Invest Dermatol. 1996 Apr;106(4):715-20 [PMID: 8618010]
  27. Nature. 2008 Jul 24;454(7203):428-35 [PMID: 18650913]
  28. Mutat Res. 2005 Apr 1;571(1-2):185-205 [PMID: 15748647]
  29. Mutat Res Rev Mutat Res. 2014 Feb 15;: [PMID: 24548818]
  30. Exp Dermatol. 2009 Jun;18(6):553-61 [PMID: 19320737]
  31. Mod Pathol. 2014 Jul;27(7):945-57 [PMID: 24356192]
  32. Photochem Photobiol. 2008 Mar-Apr;84(2):489-500 [PMID: 18266816]
  33. Immunology. 2018 Jul;154(3):510-521 [PMID: 29377107]
  34. Int J Radiat Biol. 1999 Dec;75(12):1541-9 [PMID: 10622260]
  35. J Toxicol Environ Health A. 2016;79(9-10):419-26 [PMID: 27267824]
  36. J Radiat Res. 2014 Mar 1;55(2):210-7 [PMID: 23979077]
  37. Pathophysiology. 2009 Aug;16(2-3):89-102 [PMID: 19285841]
  38. Int J Mol Sci. 2016 Jun 02;17(6): [PMID: 27271600]
  39. Health Phys. 2020 May;118(5):483-524 [PMID: 32167495]
  40. Science. 1984 Feb 10;223(4636):594-7 [PMID: 6695170]
  41. Bioelectromagnetics. 2000 May;21(4):255-63 [PMID: 10797454]
  42. Photochem Photobiol. 2003 Jul;78(1):43-8 [PMID: 12929747]
  43. Histopathology. 2007 Dec;51(6):793-804 [PMID: 18042068]
  44. Int J Ophthalmol. 2017 Jun 18;10(6):827-833 [PMID: 28730070]
  45. Lancet Oncol. 2011 Jul;12(7):624-6 [PMID: 21845765]
  46. Environ Res. 2016 Feb;145:50-60 [PMID: 26618505]
  47. J Toxicol Environ Health B Crit Rev. 2009 Oct;12(8):572-97 [PMID: 20183535]
  48. Mutat Res. 2010 Dec;705(3):252-68 [PMID: 20955816]
  49. Radiat Res. 2019 Jan;191(1):20-30 [PMID: 30339042]
  50. J Sleep Res. 2019 Aug;28(4):e12813 [PMID: 30648318]
  51. Mol Med Rep. 2019 Mar;19(3):1687-1693 [PMID: 30628673]
  52. Sci Rep. 2021 Apr 7;11(1):7680 [PMID: 33828192]
  53. J Clin Invest. 1990 Dec;86(6):1783-9 [PMID: 2254445]
  54. Org Biomol Chem. 2010 Apr 7;8(7):1706-11 [PMID: 20237685]
  55. Invest Ophthalmol Vis Sci. 1997 Nov;38(12):2483-91 [PMID: 9375566]
  56. Prog Biophys Mol Biol. 2019 Jan;141:25-36 [PMID: 30030071]
  57. J Clin Immunol. 2011 Dec;31(6):1105-11 [PMID: 21710276]
  58. Radiat Res. 2015 Dec;184(6):568-77 [PMID: 26600173]
  59. Methods Enzymol. 2000;319:359-66 [PMID: 10907526]

Grants

  1. EST-2015-RF-14/French Agency for Food, Environmental and Occupational Health & Safety

MeSH Term

Humans
Radio Waves
Inflammation
Ultraviolet Rays
Skin
Cytokines

Chemicals

Cytokines

Word Cloud

Created with Highcharts 10.0.0exposureUVRFWi-FiskinradiationadaptiveMHzstudyinflammationresponsehumanradiofrequencywirelessabsorbedeffects2422process3DphenomenonenvironmentincreasingespeciallyemitteddevicesbodyRecentlymobileemergingtechnologiesUMTSDECTLTEusinghigherfrequencies2GGSMsystems900/1800meanscirculatingcurrentssuperficialsofttissueharmfulgenotoxiccytotoxicmutagenicsolarultravioletwell-knownaimedinvestigatingwhethercombineddifferentsequenceseffectvitroexperimentsexaminedcytokinesIL-1αIL-6IL-8MMP-1enzymesecretionfull-thicknessmodelfirstimmediatelyfollowedmeasurepotentialadditivesecondpossibleprotectiveieinvestigatedchallengedresultssuggestslightlysignificantlyincreasedcytokineconcentrationspriordetectAssessmentInflammationReconstructedHumanSkinExposedCombinedExposureUltravioletRadiationinterleukin

Similar Articles

Cited By