Development of Electromagnetic-Wave-Shielding Polyvinylidene Fluoride-TiCT MXene-Carbon Nanotube Composites by Improving Impedance Matching and Conductivity.

Qimei Zhang, Jian Cui, Shuai Zhao, Guangfa Zhang, Ailin Gao, Yehai Yan
Author Information
  1. Qimei Zhang: Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. ORCID
  2. Jian Cui: Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  3. Shuai Zhao: Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  4. Guangfa Zhang: Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  5. Ailin Gao: Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  6. Yehai Yan: Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

Abstract

Absorption-dominated electromagnetic interference (EMI) shielding is attained by improving impedance matching and conductivity through structural design. Polyvinylidene fluoride (PVDF)-TiCT MXene-single-walled carbon nanotubes (SWCNTs) composites with layered heterogeneous conductive fillers and segregated structures were prepared through electrostatic flocculation and hot pressing of the PVDF composite microsphere-coated MXene and SWCNTs in a layer-by-layer fashion. Results suggest that the heterogeneous fillers improve impedance matching and layered coating, and hot compression allows the MXene and SWCNTs to form a continuous conducting network at the PVDF interface, thereby conferring excellent conductivity to the composite. The PVDF-MXene-SWCNTs composite showed a conductivity of 2.75 S cm at 2.5% MXene and 1% SWCNTs. The EMI shielding efficiency (SE) and contribution from absorption loss to the total EMI SE of PVDF-MXene-SWCNTs were 46.1 dB and 85.7%, respectively. Furthermore, the PVDF-MXene-SWCNTs composite exhibited excellent dielectric losses and impedance matching. Therefore, the layered heteroconductive fillers in a segregated structure optimize impedance matching, provide excellent conductivity, and improve absorption-dominated electromagnetic shielding.

Keywords

References

  1. Nat Commun. 2021 Jun 2;12(1):3298 [PMID: 34078891]
  2. ACS Appl Mater Interfaces. 2013 Nov 13;5(21):11383-91 [PMID: 24134429]
  3. Nanomaterials (Basel). 2022 Dec 30;13(1): [PMID: 36616083]
  4. Phys Fluids (1994). 2021 Apr;33(4):042004 [PMID: 33897247]
  5. ACS Nano. 2021 Feb 23;15(2):2880-2892 [PMID: 33565861]
  6. Sci Rep. 2017 Jun 15;7(1):3559 [PMID: 28620189]
  7. ACS Nano. 2020 Apr 28;14(4):5008-5016 [PMID: 32163265]
  8. Nat Commun. 2018 Jan 11;9(1):155 [PMID: 29323113]
  9. Nature. 2014 Dec 4;516(7529):78-81 [PMID: 25470044]
  10. Sci Rep. 2019 Apr 9;9(1):5829 [PMID: 30967574]
  11. Nanoscale Res Lett. 2019 May 7;14(1):155 [PMID: 31065819]
  12. Nat Nanotechnol. 2008 Feb;3(2):101-5 [PMID: 18654470]
  13. Nanoscale Res Lett. 2013 Dec 27;8(1):546 [PMID: 24373328]
  14. J Colloid Interface Sci. 2022 Dec 15;628(Pt B):627-636 [PMID: 36027773]
  15. Adv Mater. 2020 Mar;32(9):e1906769 [PMID: 31971302]
  16. Polymers (Basel). 2019 Sep 12;11(9): [PMID: 31547358]
  17. Nanomaterials (Basel). 2019 Feb 10;9(2): [PMID: 30744193]
  18. ACS Appl Mater Interfaces. 2018 Aug 8;10(31):26723-26732 [PMID: 29989792]
  19. ACS Appl Mater Interfaces. 2022 Feb 16;14(6):8297-8310 [PMID: 35130700]
  20. Science. 2016 Sep 9;353(6304):1137-40 [PMID: 27609888]
  21. Nanomicro Lett. 2022 Sep 17;14(1):188 [PMID: 36114884]
  22. Nanoscale Res Lett. 2010 May 11;5(7):1170-6 [PMID: 20596498]
  23. Sci Rep. 2012;2:558 [PMID: 22870387]
  24. Sci Rep. 2017 Mar 28;7(1):479 [PMID: 28352103]
  25. Materials (Basel). 2021 Jun 17;14(12): [PMID: 34204440]
  26. Polymers (Basel). 2019 Jul 25;11(8): [PMID: 31349608]
  27. Nat Commun. 2019 Jun 10;10(1):2537 [PMID: 31182709]
  28. Nanomicro Lett. 2019 Sep 7;11(1):72 [PMID: 34138029]
  29. Nanomicro Lett. 2020 Mar 25;12(1):78 [PMID: 34138291]
  30. ACS Appl Mater Interfaces. 2019 Apr 3;11(13):12535-12543 [PMID: 30869855]
  31. Nanomicro Lett. 2021 Apr 27;13(1):115 [PMID: 34138345]

Grants

  1. ZR2020ME074/Natural Science Foundation of Shandong Province
  2. KJ2020A0756/Education Department of Anhui Province
  3. 2020M672014/China Postdoctoral Science Foundation
  4. 51703111/Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0shieldingimpedancematchingconductivitySWCNTscompositeMXeneelectromagneticEMIPVDFlayeredfillerssegregatedexcellentPVDF-MXene-SWCNTsinterferencePolyvinylidenefluoridecarbonnanotubesheterogeneoushotimprove2SEstructureAbsorption-dominatedattainedimprovingstructuraldesign-TiCTMXene-single-walledcompositesconductivestructurespreparedelectrostaticflocculationpressingmicrosphere-coatedlayer-by-layerfashionResultssuggestcoatingcompressionallowsformcontinuousconductingnetworkinterfacetherebyconferringshowed75Scm5%1%efficiencycontributionabsorptionlosstotal461dB857%respectivelyFurthermoreexhibiteddielectriclossesThereforeheteroconductiveoptimizeprovideabsorption-dominatedDevelopmentElectromagnetic-Wave-ShieldingFluoride-TiCTMXene-CarbonNanotubeCompositesImprovingImpedanceMatchingConductivitypolyvinylidenesingle-walled

Similar Articles

Cited By