Impact on Some Soil Physical and Chemical Properties Caused by Metal and Metallic Oxide Engineered Nanoparticles: A Review.

Jonathan Suazo-Hernández, Nicolás Arancibia-Miranda, Rawan Mlih, Lizethly Cáceres-Jensen, Nanthi Bolan, María de la Luz Mora
Author Information
  1. Jonathan Suazo-Hernández: Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4780000, Chile. ORCID
  2. Nicolás Arancibia-Miranda: Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago 8320000, Chile.
  3. Rawan Mlih: Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Juelich (FZJ), 52425 Juelich, Germany.
  4. Lizethly Cáceres-Jensen: Physical & Analytical Chemistry Laboratory (PachemLab), Nucleus of Computational Thinking and Education for Sustainable Development (NuCES), Center for Research in Education (CIE-UMCE), Department of Chemistry, Metropolitan University of Educational Sciences, Santiago 776019, Chile. ORCID
  5. Nanthi Bolan: School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia.
  6. María de la Luz Mora: Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4780000, Chile. ORCID

Abstract

In recent years, the release of metal and metallic oxide engineered nanoparticles (ENPs) into the environment has generated an increase in their accumulation in agricultural soils, which is a serious risk to the ecosystem and soil health. Here, we show the impact of ENPs on the physical and chemical properties of soils. A literature search was performed in the Scopus database using the keywords ENPs, plus soil physical properties or soil chemical properties, and elements availability. In general, we found that the presence of metal and metallic oxide ENPs in soils can increase hydraulic conductivity and soil porosity and reduce the distance between soil particles, as well as causing a variation in pH, cation exchange capacity (CEC), electrical conductivity (EC), redox potential (Eh), and soil organic matter (SOM) content. Furthermore, ENPs or the metal cations released from them in soils can interact with nutrients like phosphorus (P) forming complexes or precipitates, decreasing their bioavailability in the soil solution. The results depend on the soil properties and the doses, exposure duration, concentrations, and type of ENPs. Therefore, we suggest that particular attention should be paid to every kind of metal and metallic oxide ENPs deposited into the soil.

Keywords

References

  1. J Hazard Mater. 2011 Sep 15;192(3):1364-9 [PMID: 21794978]
  2. Bull Environ Contam Toxicol. 2019 Jan;102(1):98-104 [PMID: 30374583]
  3. Acc Chem Res. 2019 Jun 18;52(6):1507-1518 [PMID: 31149804]
  4. Chemosphere. 2017 Oct;185:816-825 [PMID: 28735234]
  5. Chemosphere. 2019 Jul;227:17-25 [PMID: 30981099]
  6. Nanomaterials (Basel). 2018 Oct 16;8(10): [PMID: 30332772]
  7. Sci Total Environ. 2019 Nov 10;690:502-510 [PMID: 31301491]
  8. Plant Physiol Biochem. 2017 Dec;121:216-225 [PMID: 29149700]
  9. Water Res. 2017 Oct 15;123:678-686 [PMID: 28710984]
  10. Front Microbiol. 2020 Mar 12;11:365 [PMID: 32226420]
  11. Environ Sci Technol. 2021 Jun 1;55(11):7491-7500 [PMID: 33999596]
  12. Environ Int. 2020 May;138:105646 [PMID: 32179325]
  13. J Hazard Mater. 2018 Mar 15;346:62-72 [PMID: 29247955]
  14. Sci Total Environ. 2019 Jan 15;648:102-108 [PMID: 30114581]
  15. Sci Total Environ. 2019 Aug 15;678:430-437 [PMID: 31077921]
  16. J Hazard Mater. 2021 Jun 15;412:125207 [PMID: 33513552]
  17. Sci Rep. 2018 Jan 25;8(1):1565 [PMID: 29371617]
  18. Environ Pollut. 2009 Aug-Sep;157(8-9):2405-12 [PMID: 19345459]
  19. J Hazard Mater. 2017 Feb 15;324(Pt B):298-305 [PMID: 27810328]
  20. Environ Pollut. 2017 Jun;225:201-210 [PMID: 28388518]
  21. Environ Pollut. 2011 Apr;159(4):970-6 [PMID: 21247678]
  22. J Hazard Mater. 2020 Jun 5;391:122224 [PMID: 32058228]
  23. Plant Physiol Biochem. 2021 Apr;161:12-24 [PMID: 33561657]
  24. Environ Sci Technol. 2017 Feb 21;51(4):2226-2234 [PMID: 28106997]
  25. Chemosphere. 2020 Mar;243:125413 [PMID: 31765900]
  26. Environ Sci Technol. 2016 Mar 15;50(6):2747-53 [PMID: 26866387]
  27. Environ Sci Pollut Res Int. 2015 Nov;22(21):16803-13 [PMID: 26099597]
  28. Ecotoxicol Environ Saf. 2020 Mar 1;190:110095 [PMID: 31869714]
  29. Arch Environ Contam Toxicol. 2014 Nov;67(4):465-73 [PMID: 24793192]
  30. Environ Geochem Health. 2022 Jan;44(1):221-234 [PMID: 33864175]
  31. Sci Total Environ. 2015 Dec 1;535:79-84 [PMID: 25863574]
  32. Sci Total Environ. 2020 Oct 10;738:140240 [PMID: 32570083]
  33. Chemosphere. 2013 Jan;90(2):640-6 [PMID: 23040650]
  34. Environ Sci Technol. 2009 Oct 1;43(19):7285-90 [PMID: 19848135]
  35. Environ Sci Technol. 2020 Mar 17;54(6):3334-3342 [PMID: 32088952]
  36. Environ Pollut. 2020 May;260:113970 [PMID: 32014742]
  37. Chemosphere. 2019 Feb;216:564-575 [PMID: 30390587]
  38. Ecol Appl. 2018 Sep;28(6):1435-1449 [PMID: 29939451]
  39. Sci Total Environ. 2020 Apr 15;713:136662 [PMID: 31958734]
  40. J Hazard Mater. 2014 Sep 15;280:89-96 [PMID: 25133850]
  41. J Agric Food Chem. 2015 Aug 12;63(31):6876-82 [PMID: 26194089]
  42. Environ Sci Process Impacts. 2013 Jan;15(1):275-82 [PMID: 24592445]
  43. Nanomaterials (Basel). 2017 Jan 22;7(1): [PMID: 28336855]
  44. Environ Sci Technol. 2005 Mar 1;39(5):1291-8 [PMID: 15787369]
  45. J Hazard Mater. 2021 Jan 5;401:123385 [PMID: 32763688]
  46. Chemosphere. 2011 Mar;82(11):1675-82 [PMID: 21122887]
  47. Chemosphere. 2018 Jun;200:217-226 [PMID: 29486361]
  48. Sci Rep. 2021 Apr 19;11(1):8429 [PMID: 33875737]
  49. Environ Sci Technol. 2014 May 6;48(9):4757-64 [PMID: 24693856]
  50. Sci Total Environ. 2019 Apr 1;659:491-498 [PMID: 31096378]
  51. Sci Total Environ. 2015 Dec 1;535:54-60 [PMID: 25434472]
  52. Chemosphere. 2018 Jun;200:471-480 [PMID: 29501884]
  53. Int J Environ Res Public Health. 2020 Apr 05;17(7): [PMID: 32260493]
  54. Sci Total Environ. 2019 Dec 1;694:133822 [PMID: 31756795]
  55. J Hazard Mater. 2015;283:529-35 [PMID: 25464292]
  56. Environ Sci Pollut Res Int. 2020 Mar;27(9):9288-9296 [PMID: 31916159]
  57. Environ Sci Technol. 2017 May 2;51(9):4907-4917 [PMID: 28383251]
  58. Environ Sci Pollut Res Int. 2020 Sep;27(27):33681-33691 [PMID: 32533482]
  59. Sci Total Environ. 2018 Apr 15;621:1033-1046 [PMID: 29079093]
  60. Sci Total Environ. 2015 Dec 1;535:160-71 [PMID: 25728395]
  61. Sci Total Environ. 2012 Mar 15;420:327-33 [PMID: 22326137]
  62. Chemosphere. 2015 Jan;119:1365-1371 [PMID: 24630459]
  63. Chemosphere. 2016 Apr;149:137-45 [PMID: 26855217]
  64. Nat Nanotechnol. 2009 Oct;4(10):634-41 [PMID: 19809453]
  65. Sci Total Environ. 2020 Apr 1;711:135220 [PMID: 31831238]
  66. Sci Total Environ. 2017 Apr 15;584-585:1324-1332 [PMID: 28190571]
  67. Chemosphere. 2022 Jan;287(Pt 1):132097 [PMID: 34523458]
  68. Environ Sci Technol. 2014 Jan 21;48(2):1280-9 [PMID: 24372151]

Word Cloud

Created with Highcharts 10.0.0soilENPspropertiesmetalsoilsmetallicoxidenanoparticlesenvironmentincreasephysicalchemicalcanconductivityrecentyearsreleaseengineeredgeneratedaccumulationagriculturalseriousriskecosystemhealthshowimpactliteraturesearchperformedScopusdatabaseusingkeywordspluselementsavailabilitygeneralfoundpresencehydraulicporosityreducedistanceparticleswellcausingvariationpHcationexchangecapacityCECelectricalECredoxpotentialEhorganicmatterSOMcontentFurthermorecationsreleasedinteractnutrientslikephosphorusPformingcomplexesprecipitatesdecreasingbioavailabilitysolutionresultsdependdosesexposuredurationconcentrationstypeThereforesuggestparticularattentionpaideverykinddepositedImpactSoilPhysicalChemicalPropertiesCausedMetalMetallicOxideEngineeredNanoparticles:Reviewemergingpollutants

Similar Articles

Cited By