Wnt Signaling Pathway Collapse upon β-Catenin Destruction by a Novel Antimicrobial Peptide SKACP003: Unveiling the Molecular Mechanism and Genetic Activities Using Breast Cancer Cell Lines.

Kanitha Selvarathinam, Prabhu Subramani, Malarvili Thekkumalai, Ravikumar Vilwanathan, Ramganesh Selvarajan, Akebe Luther King Abia
Author Information
  1. Kanitha Selvarathinam: Department of Biochemistry, J.J. College of Arts and Science (Autonomous), Pudukkottai 622422, Tamilnadu, India. ORCID
  2. Prabhu Subramani: Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli 622422, Tamilnadu, India.
  3. Malarvili Thekkumalai: Government Arts and Science College, Tiruchirappalli 622422, Tamilnadu, India.
  4. Ravikumar Vilwanathan: Department of Biochemistry, School of Life Science, Bharathidasan University, Tiruchirappalli 622422, Tamilnadu, India.
  5. Ramganesh Selvarajan: Department of Environmental Sciences, College of Agricultural and Environmental Sciences (CAES), University of South Africa (UNISA), Florida-Campus, Florida Park, Roodepoort 1709, South Africa. ORCID
  6. Akebe Luther King Abia: Department of Environmental Sciences, College of Agricultural and Environmental Sciences (CAES), University of South Africa (UNISA), Florida-Campus, Florida Park, Roodepoort 1709, South Africa. ORCID

Abstract

Despite progress in breast cancer treatment, the survival rate for patients with metastatic breast cancer remains low due to chemotherapeutic agent resistance and the lack of specificity of the current generation of cancer drugs. Our previous findings indicated that the antimicrobial peptide SKACP003 exhibited anticancer properties, particularly against the MCF-7, MDA-MB-231, and MDA-MB-453 breast cancer cell lines. However, the mechanism of SKACP003-induced cancer cell death is unknown. Here, we investigated the molecular mechanism by which SKACP003 inhibits the cell cycle, cell proliferation, and angiogenesis in breast cancer cell lines. The results revealed that all the breast cancer cell lines treated at their IC values significantly inhibited the replicative phase of the cell cycle. The SKACP003-induced growth inhibition induced apoptosis, as evidenced by a decrease in BCL-2 and an increase in BAX and caspase gene (Cas-3, Cas-8, and Cas-9) expression. Reduced expression of the β-Catenin signaling pathway was associated with the SKACP003-induced apoptosis. SKACP003-treated breast cancer cells showed decreased expression of Wnt/β-Catenin targeting genes such as C-Myc, P, and COX-2 and significant downregulation of CDK-4 and CDK-6 genes. Furthermore, cytoplasmic β-catenin protein levels in SKACP003-treated cell lines were significantly lower than in control cell lines. The results of the current study suggest that the newly identified antimicrobial peptide SKACP003 has great potential as a candidate for specifically targeting the β-catenin and thus significantly reducing the progression and prognosis of breast cancer cell lines.

Keywords

References

  1. Cell. 2006 Nov 3;127(3):469-80 [PMID: 17081971]
  2. Biochim Biophys Acta. 2003 Jun 5;1653(1):1-24 [PMID: 12781368]
  3. Hum Cell. 1997 Dec;10(4):221-30 [PMID: 9573481]
  4. Toxicol Pathol. 2016 Feb;44(2):267-78 [PMID: 26692561]
  5. Med Res Rev. 2013 Jan;33(1):190-234 [PMID: 21922503]
  6. Annu Rev Cell Dev Biol. 2004;20:781-810 [PMID: 15473860]
  7. Asia Pac J Clin Oncol. 2017 Aug;13(4):289-295 [PMID: 28181405]
  8. Iran J Biotechnol. 2018 Aug 11;16(3):e1867 [PMID: 31457026]
  9. Am J Pathol. 1999 Oct;155(4):1033-8 [PMID: 10514384]
  10. J Cell Biochem. 2012 Jan;113(1):49-60 [PMID: 21866566]
  11. Chem Phys Lipids. 2011 Nov;164(8):766-81 [PMID: 21945565]
  12. PLoS One. 2012;7(4):e35368 [PMID: 22523587]
  13. Prog Lipid Res. 2012 Apr;51(2):149-77 [PMID: 22245454]
  14. Oncotarget. 2017 May 16;8(20):33972-33989 [PMID: 28430641]
  15. Methods Mol Med. 2005;111:127-48 [PMID: 15911977]
  16. Nucleic Acids Res. 2006;34(19):5705-14 [PMID: 17040897]
  17. Cell. 1992 Jun 26;69(7):1073-87 [PMID: 1617723]
  18. Mol Biol Rep. 2010 Oct;37(7):3495-501 [PMID: 19967452]
  19. Cell. 1982 Nov;31(1):99-109 [PMID: 6297757]
  20. Dev Cell. 2009 Jul;17(1):9-26 [PMID: 19619488]
  21. Int J Mol Sci. 2011;12(11):8027-51 [PMID: 22174648]
  22. Front Microbiol. 2019 Jun 05;10:1257 [PMID: 31231341]
  23. Science. 2000 Mar 3;287(5458):1606-9 [PMID: 10733430]
  24. Onco Targets Ther. 2017 Sep 19;10:4617-4624 [PMID: 29033580]
  25. Cancer Prev Res (Phila). 2009 Nov;2(11):942-50 [PMID: 19861542]
  26. Drug Discov Today. 2020 Jan;25(1):238-247 [PMID: 31786365]
  27. Aging (Albany NY). 2017 Dec 26;9(12):2695-2716 [PMID: 29283884]
  28. Biochem Pharmacol. 2012 Nov 1;84(9):1143-53 [PMID: 22935447]
  29. Nature. 1997 May 22;387(6631):422-6 [PMID: 9163430]
  30. Molecules. 2020 Jun 19;25(12): [PMID: 32575664]
  31. Mol Biol Rep. 2021 May;48(5):4943-4951 [PMID: 34061328]
  32. Mol Pharm. 2011 Jun 6;8(3):852-66 [PMID: 21480667]
  33. Protein J. 2016 Jun;35(3):202-11 [PMID: 27129462]
  34. Breast Cancer Res. 2014 Dec 12;16(6):496 [PMID: 25499975]
  35. Carcinogenesis. 2012 Mar;33(3):483-91 [PMID: 22198211]
  36. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4262-6 [PMID: 10759547]
  37. Breast Cancer Res Treat. 2009 Sep;117(1):219-21 [PMID: 18853248]
  38. PLoS One. 2016 Oct 5;11(10):e0163327 [PMID: 27706181]
  39. Oncol Lett. 2014 Apr;7(4):1175-1178 [PMID: 24944688]
  40. Biochim Biophys Acta. 2008 Feb;1778(2):357-75 [PMID: 18078805]
  41. Eur J Pharmacol. 2008 Mar 31;583(1):26-31 [PMID: 18291362]
  42. J Antibiot (Tokyo). 2011 Aug;64(8):525-31 [PMID: 21587264]
  43. Oncogene. 1994 Dec;9(12):3635-45 [PMID: 7526316]
  44. Eur J Pharmacol. 2009 Dec 25;625(1-3):190-4 [PMID: 19835863]
  45. Biochem Biophys Res Commun. 2006 Feb 24;340(4):1224-8 [PMID: 16414351]
  46. Sci Rep. 2013 Oct 18;3:2984 [PMID: 24136089]
  47. Front Oncol. 2022 Feb 23;12:819563 [PMID: 35280755]
  48. Nature. 1996 Aug 8;382(6591):511-7 [PMID: 8700224]
  49. Front Microbiol. 2013 Oct 01;4:294 [PMID: 24101917]
  50. Front Microbiol. 2013 Oct 31;4:321 [PMID: 24198814]
  51. EMBO J. 1996 Jun 17;15(12):3065-76 [PMID: 8670807]
  52. Oncol Rep. 2017 Oct;38(4):2132-2140 [PMID: 28849104]
  53. Oncogene. 2006 Dec 4;25(57):7482-91 [PMID: 17143292]
  54. Peptides. 2008 Jun;29(6):963-8 [PMID: 18328599]
  55. Carcinogenesis. 2007 Sep;28(9):1877-84 [PMID: 17449905]
  56. Cell Death Differ. 2000 Jan;7(1):102-11 [PMID: 10713725]
  57. J Am Chem Soc. 2009 Jun 10;131(22):7609-17 [PMID: 19445503]
  58. Br J Pharmacol. 2017 Dec;174(24):4611-4636 [PMID: 28910490]
  59. Toxins (Basel). 2016 May 12;8(5): [PMID: 27187467]
  60. Carcinogenesis. 2013 Feb;34(2):277-86 [PMID: 23129580]

MeSH Term

Female
Humans
Antineoplastic Agents
Apoptosis
beta Catenin
Breast Neoplasms
Cell Line, Tumor
Cell Proliferation
MCF-7 Cells
Wnt Signaling Pathway
Antimicrobial Peptides

Chemicals

Antineoplastic Agents
beta Catenin
Antimicrobial Peptides

Word Cloud

Created with Highcharts 10.0.0cancercellbreastlinesantimicrobialSKACP003SKACP003-inducedsignificantlyexpressionβ-catenincurrentpeptideanticancermechanismcycleresultsapoptosisβ-CateninpathwaySKACP003-treatedtargetinggenesdownregulationWntDespiteprogresstreatmentsurvivalratepatientsmetastaticremainslowduechemotherapeuticagentresistancelackspecificitygenerationdrugspreviousfindingsindicatedexhibitedpropertiesparticularlyMCF-7MDA-MB-231MDA-MB-453HoweverdeathunknowninvestigatedmolecularinhibitsproliferationangiogenesisrevealedtreatedICvaluesinhibitedreplicativephasegrowthinhibitioninducedevidenceddecreaseBCL-2increaseBAXcaspasegeneCas-3Cas-8Cas-9ReducedsignalingassociatedcellsshoweddecreasedWnt/β-CateninC-MycPCOX-2significantCDK-4CDK-6FurthermorecytoplasmicproteinlevelslowercontrolstudysuggestnewlyidentifiedgreatpotentialcandidatespecificallythusreducingprogressionprognosisSignalingPathwayCollapseuponDestructionNovelAntimicrobialPeptideSKACP003:UnveilingMolecularMechanismGeneticActivitiesUsingBreastCancerCellLinesalternativetherapyagentspeptidesoncology

Similar Articles

Cited By