Physiological and Biochemical Responses of Commercial Strawberry Cultivars under Optimal and Drought Stress Conditions.

Seyed Morteza Zahedi, Marjan Sadat Hosseini, Narjes Fahadi Hoveizeh, Saeid Kadkhodaei, Marek Vaculík
Author Information
  1. Seyed Morteza Zahedi: Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, Iran.
  2. Marjan Sadat Hosseini: Department of Agriculture, Goldaru Pharmaceutical Company, Isfahan 81791-35111, Iran.
  3. Narjes Fahadi Hoveizeh: Department of Horticultural Science, College of Agriculture, Shahid Chamran University of Ahwaz, Ahwaz 61357-83151, Iran.
  4. Saeid Kadkhodaei: Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan 84156-83111, Iran. ORCID
  5. Marek Vaculík: Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina B2, Ilkovičova 6, 842 15 Bratislava, Slovakia.

Abstract

Improving the extent of adaptation and the choice of the most tolerant cultivar is the first step to mitigating the adverse effects of limited water, especially in susceptible plants such as strawberries. To address this issue, two commercial strawberry cultivars (Camarosa and Gaviota) were compared when irrigated to match 100, 75, 50, and 25% field capacity (FC) to simulate the control, slight, moderate, and severe drought stress conditions, respectively. Drought stress induced the reduction of total chlorophyll, carotenoid, relative water content, and phenolic content significantly, whereas the activity of antioxidant enzymes, electrolyte leakage, osmolyte accumulation, and oxidative markers upsurged progressively in drought severity-dependent behavior. Gaviota produced more proline, hydrogen peroxide as a marker of membrane lipid peroxidation and disposed of by higher electrolyte leakage, significantly. On the other hand, Camarosa having higher soluble carbohydrates as well as enzymatic and non-enzymatic antioxidants could be considered a drought-tolerant cultivar. Genotypic variation between these cultivars could be used in breeding projects to promote drought-tolerant strawberries in the future.

Keywords

References

  1. J Exp Bot. 2002 Dec;53(379):2401-10 [PMID: 12432032]
  2. Plant Physiol Biochem. 2015 Jan;86:155-165 [PMID: 25500452]
  3. BMC Plant Biol. 2022 Oct 7;22(1):477 [PMID: 36203130]
  4. Sci Rep. 2019 Mar 7;9(1):3890 [PMID: 30846745]
  5. Physiol Plant. 2021 Jun;172(2):1363-1375 [PMID: 33462814]
  6. Cell Mol Biol (Noisy-le-grand). 2018 Dec 31;64(15):20-29 [PMID: 30672432]
  7. Planta. 2017 Jun;245(6):1067 [PMID: 28456836]
  8. Protoplasma. 2015 Mar;252(2):461-75 [PMID: 25164029]
  9. F1000Res. 2016 Jun 30;5: [PMID: 27441087]
  10. Biochem J. 1954 Jul;57(3):508-14 [PMID: 13181867]
  11. J Sci Food Agric. 2018 Jan;98(1):304-311 [PMID: 28585314]
  12. Tree Physiol. 1997 Jan;17(1):13-21 [PMID: 14759909]
  13. Plant Physiol. 1949 Jan;24(1):1-15 [PMID: 16654194]
  14. Plant Physiol. 2016 Oct;172(2):1074-1088 [PMID: 27512016]
  15. Trends Plant Sci. 2010 Feb;15(2):89-97 [PMID: 20036181]
  16. Physiol Plant. 2020 Apr;168(4):973-989 [PMID: 31670837]
  17. J Plant Res. 2019 Nov;132(6):881-901 [PMID: 31606785]
  18. Int J Mol Sci. 2019 Apr 08;20(7): [PMID: 30965607]
  19. Heliyon. 2021 Jun 24;7(6):e07403 [PMID: 34222705]
  20. Physiol Mol Biol Plants. 2010 Jul;16(3):259-72 [PMID: 23572976]
  21. J Agric Food Chem. 2016 Jun 8;64(22):4435-49 [PMID: 27172913]
  22. J Exp Bot. 2015 Feb;66(3):669-80 [PMID: 25481689]
  23. Food Chem. 2016 Nov 15;211:51-8 [PMID: 27283606]
  24. Food Chem. 2018 Apr 15;245:659-666 [PMID: 29287423]
  25. Planta. 2019 Nov 27;251(1):3 [PMID: 31776765]

Word Cloud

Created with Highcharts 10.0.0stressadaptationcultivarwaterstrawberriescultivarsCamarosaGaviotafieldcapacitydroughtDroughtcontentsignificantlyelectrolyteleakageprolinehigherantioxidantsdrought-tolerantImprovingextentchoicetolerantfirststepmitigatingadverseeffectslimitedespeciallysusceptibleplantsaddressissuetwocommercialstrawberrycomparedirrigatedmatch100755025%FCsimulatecontrolslightmoderatesevereconditionsrespectivelyinducedreductiontotalchlorophyllcarotenoidrelativephenolicwhereasactivityantioxidantenzymesosmolyteaccumulationoxidativemarkersupsurgedprogressivelyseverity-dependentbehaviorproducedhydrogenperoxidemarkermembranelipidperoxidationdisposedhandsolublecarbohydrateswellenzymaticnon-enzymaticconsideredGenotypicvariationusedbreedingprojectspromotefuturePhysiologicalBiochemicalResponsesCommercialStrawberryCultivarsOptimalStressConditionscamarosatolerance

Similar Articles

Cited By