Plant Growth Promoting Rhizobacteria in Plant Health: A Perspective Study of the Underground Interaction.

Mudasir Ahmad Bhat, Awdhesh Kumar Mishra, Saima Jan, Mujtaba Aamir Bhat, Mohammad Azhar Kamal, Safikur Rahman, Ali Asghar Shah, Arif Tasleem Jan
Author Information
  1. Mudasir Ahmad Bhat: Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India.
  2. Awdhesh Kumar Mishra: Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
  3. Saima Jan: Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India.
  4. Mujtaba Aamir Bhat: Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India. ORCID
  5. Mohammad Azhar Kamal: Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
  6. Safikur Rahman: Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, India. ORCID
  7. Ali Asghar Shah: Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India.
  8. Arif Tasleem Jan: Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India. ORCID

Abstract

Plants are affected by various environmental stresses such as high or low temperatures, drought, and high salt levels, which can disrupt their normal cellular functioning and impact their growth and productivity. These stressors offer a major constraint to the morphological, physiological, and biochemical parameters; thereby attributing serious complications in the growth of crops such as rice, wheat, and corn. Considering the strategic and intricate association of soil microbiota, known as plant growth-promoting rhizobacteria (PGPR), with the plant roots, PGPR helps plants to adapt and survive under changing environmental conditions and become more resilient to stress. They aid in nutrient acquisition and regulation of water content in the soil and also play a role in regulating osmotic balance and ion homeostasis. Boosting key physiological processes, they contribute significantly to the alleviation of stress and promoting the growth and development of plants. This review examines the use of PGPR in increasing plant tolerance to different stresses, focusing on their impact on water uptake, nutrient acquisition, ion homeostasis, and osmotic balance, as well as their effects on crop yield and food security.

Keywords

References

  1. Front Microbiol. 2022 May 13;13:901865 [PMID: 35633670]
  2. Trends Plant Sci. 2022 Jul;27(7):674-687 [PMID: 35279365]
  3. Metabolites. 2021 May 24;11(6): [PMID: 34074032]
  4. J Appl Microbiol. 2007 May;102(5):1283-92 [PMID: 17448163]
  5. Plant Cell Environ. 2016 Apr;39(4):823-33 [PMID: 26470009]
  6. Plant Physiol Biochem. 2016 Sep;106:236-43 [PMID: 27182958]
  7. Plant Physiol Biochem. 2011 Apr;49(4):427-34 [PMID: 21300550]
  8. Sci Rep. 2019 Apr 10;9(1):5855 [PMID: 30971817]
  9. Plant Biol (Stuttg). 2016 Nov;18(6):992-1000 [PMID: 27607023]
  10. J Plant Physiol. 2014 Jul 1;171(11):884-94 [PMID: 24913045]
  11. Ecotoxicol Environ Saf. 2019 Apr 30;171:539-548 [PMID: 30641315]
  12. Appl Microbiol Biotechnol. 2013 Oct;97(20):9155-64 [PMID: 23982328]
  13. Plant Pathol J. 2013 Jun;29(2):201-8 [PMID: 25288947]
  14. J Am Chem Soc. 2018 Dec 12;140(49):16957-16961 [PMID: 30472830]
  15. Ecotoxicol Environ Saf. 2019 Nov 15;183:109466 [PMID: 31408821]
  16. Microbiol Res. 2017 Sep;202:21-29 [PMID: 28647119]
  17. Funct Plant Biol. 2012 Feb;39(1):82-90 [PMID: 32480762]
  18. Mol Plant Microbe Interact. 2010 Aug;23(8):1097-104 [PMID: 20615119]
  19. N Biotechnol. 2016 Jan 25;33(1):32-40 [PMID: 26255131]
  20. J Appl Microbiol. 2014 Sep;117(3):766-73 [PMID: 24909841]
  21. Saudi J Biol Sci. 2022 Mar;29(3):1760-1769 [PMID: 35280578]
  22. PLoS One. 2015 Apr 15;10(4):e0122281 [PMID: 25874563]
  23. Nat Rev Microbiol. 2022 Jul;20(7):415-430 [PMID: 35228712]
  24. Curr Opin Microbiol. 1999 Dec;2(6):641-6 [PMID: 10607628]
  25. Front Microbiol. 2017 Sep 06;8:1706 [PMID: 28932218]
  26. J Biol Chem. 1995 Nov 10;270(45):26723-6 [PMID: 7592901]
  27. Ecotoxicol Environ Saf. 2020 Dec 1;205:111333 [PMID: 32979802]
  28. Front Microbiol. 2018 Jan 11;8:2580 [PMID: 29379471]
  29. Biomed Res Int. 2016;2016:6284547 [PMID: 26951880]
  30. Front Microbiol. 2018 Jul 31;9:1606 [PMID: 30108553]
  31. Plant Biol (Stuttg). 2015 Jan;17(1):288-93 [PMID: 24750405]
  32. AMB Express. 2022 Jul 14;12(1):93 [PMID: 35834031]
  33. Mol Plant Microbe Interact. 2011 Apr;24(4):395-407 [PMID: 21171889]
  34. J Bacteriol. 2007 Nov;189(22):8290-9 [PMID: 17601783]
  35. Front Plant Sci. 2014 Oct 08;5:525 [PMID: 25339966]
  36. New Phytol. 2009 Jan;181(2):413-423 [PMID: 19121036]
  37. Biotechnol Adv. 2019 Nov 1;37(6):107371 [PMID: 30890361]
  38. J Exp Bot. 2011 Jan;62(2):595-603 [PMID: 20881012]
  39. Microbiol Res. 2019 Apr;221:36-49 [PMID: 30825940]
  40. Front Plant Sci. 2023 Jan 12;13:1101862 [PMID: 36714780]
  41. Int J Mol Sci. 2016 Jul 29;17(8): [PMID: 27483244]
  42. Front Microbiol. 2020 Aug 20;11:1952 [PMID: 32973708]
  43. Ann Bot. 2003 Apr;91(5):503-27 [PMID: 12646496]
  44. Saudi J Biol Sci. 2021 Sep;28(9):5317-5324 [PMID: 34466110]
  45. Environ Pollut. 2006 Mar;140(1):124-35 [PMID: 16150522]
  46. J Exp Bot. 2009;60(11):3097-107 [PMID: 19436044]
  47. J Plant Physiol. 2009 Apr 1;166(6):667-74 [PMID: 18829132]
  48. Environ Sci Pollut Res Int. 2015 Apr;22(7):4907-21 [PMID: 25369916]
  49. Physiol Plant. 2015 Jan;153(1):79-90 [PMID: 24796562]
  50. J Environ Biol. 2008 Sep;29(5):689-91 [PMID: 19295066]
  51. Plant Physiol. 2016 Oct;172(2):1074-1088 [PMID: 27512016]
  52. J Plant Physiol. 2008 Jan;165(1):60-70 [PMID: 18031866]
  53. J Proteomics. 2011 Aug 12;74(8):1323-37 [PMID: 21440686]
  54. Plant Physiol Biochem. 2014 Nov;84:115-124 [PMID: 25270162]
  55. Annu Rev Plant Biol. 2008;59:651-81 [PMID: 18444910]
  56. J Plant Physiol. 2016 Mar 15;192:1-12 [PMID: 26796423]
  57. Science. 2022 Mar 4;375(6584):abe0725 [PMID: 35239372]
  58. Ecotoxicol Environ Saf. 2014 Jun;104:349-56 [PMID: 24736025]
  59. New Phytol. 2013 Oct;200(2):558-569 [PMID: 23822616]
  60. Chemosphere. 2006 Aug;64(6):991-7 [PMID: 16487570]
  61. Plant J. 2008 Oct;56(2):264-273 [PMID: 18573192]
  62. Plant Physiol Biochem. 2004 Jun;42(6):565-72 [PMID: 15246071]
  63. Front Microbiol. 2022 Jul 14;13:916488 [PMID: 35910633]
  64. Front Microbiol. 2015 Aug 28;6:883 [PMID: 26379654]
  65. J Biotechnol. 2020 Dec 20;324:34-60 [PMID: 32980369]
  66. Microorganisms. 2017 Jul 26;5(3): [PMID: 28933739]
  67. FEMS Microbiol Rev. 2007 Jul;31(4):425-48 [PMID: 17509086]
  68. Annu Rev Plant Biol. 2002;53:247-73 [PMID: 12221975]
  69. Physiol Plant. 2017 Dec;161(4):502-514 [PMID: 28786221]
  70. Nature. 2015 Dec 17;528(7582):340-1 [PMID: 26633626]
  71. Appl Environ Microbiol. 2006 Nov;72(11):7246-52 [PMID: 16980419]
  72. Appl Environ Microbiol. 1983 Jun;45(6):1802-7 [PMID: 6410989]
  73. Chemosphere. 2017 Feb;168:1100-1106 [PMID: 28029384]
  74. Front Plant Sci. 2017 Oct 23;8:1768 [PMID: 29109733]
  75. Saudi J Biol Sci. 2021 Jul;28(7):3823-3834 [PMID: 34220237]
  76. Front Plant Sci. 2016 Jun 15;7:813 [PMID: 27379115]
  77. Int J Mol Sci. 2019 May 23;20(10): [PMID: 31126133]
  78. Environ Sci Pollut Res Int. 2016 Mar;23(5):3984-99 [PMID: 25758420]
  79. Microbiol Res. 2016 Mar;184:13-24 [PMID: 26856449]
  80. Planta. 2007 Sep;226(4):839-51 [PMID: 17497164]
  81. J Appl Microbiol. 2022 Nov;133(5):2802-2813 [PMID: 35880391]
  82. Physiol Plant. 2021 Jun;172(2):1255-1268 [PMID: 33576013]
  83. Planta. 2010 Jul;232(2):533-43 [PMID: 20499084]
  84. Environ Sci Pollut Res Int. 2019 Feb;26(4):3848-3861 [PMID: 30539390]
  85. Int J Mol Sci. 2018 May 05;19(5): [PMID: 29734724]
  86. Front Microbiol. 2016 Nov 18;7:1785 [PMID: 27917154]
  87. Mol Biol Rep. 2011 Oct;38(7):4823-32 [PMID: 21136169]
  88. Appl Environ Microbiol. 2000 Aug;66(8):3393-8 [PMID: 10919797]
  89. Can J Microbiol. 2007 Jul;53(7):912-8 [PMID: 17898846]
  90. Curr Opin Microbiol. 2017 Jun;37:8-14 [PMID: 28433932]
  91. Environ Microbiol. 2008 Jan;10(1):1-9 [PMID: 18211262]
  92. Plant Cell Environ. 2015 Apr;38(4):693-709 [PMID: 25124075]
  93. Int J Mol Sci. 2020 Jan 03;21(1): [PMID: 31947822]
  94. Front Microbiol. 2016 Dec 16;7:1966 [PMID: 28018305]
  95. Mol Plant Microbe Interact. 1999 Nov;12(11):951-9 [PMID: 10550893]
  96. Funct Plant Biol. 2016 Jul;43(7):632-642 [PMID: 32480492]
  97. Molecules. 2016 Apr 29;21(5): [PMID: 27136521]
  98. J Biol Chem. 2013 Feb 15;288(7):4502-12 [PMID: 23293028]
  99. J Biol Chem. 1995 Aug 4;270(31):18252-9 [PMID: 7543100]
  100. Funct Plant Biol. 2008 Apr;35(2):141-151 [PMID: 32688765]
  101. Plant Physiol. 2007 Sep;145(1):174-82 [PMID: 17631526]
  102. PLoS One. 2012;7(12):e52565 [PMID: 23285089]
  103. Int J Mol Sci. 2015 Dec 10;16(12):29592-630 [PMID: 26690422]
  104. FEMS Microbiol Lett. 2009 Jul;296(1):52-9 [PMID: 19459961]
  105. Chemosphere. 2017 Aug;181:635-644 [PMID: 28476003]
  106. J Exp Bot. 2006;57(5):1149-60 [PMID: 16449373]

Grants

  1. JK ST&IC/SRE/996-998/J&K Science Technology and Innovation Council
  2. CRG/2019/004106/DST SERB, India

Word Cloud

Created with Highcharts 10.0.0plantPGPRgrowthstressenvironmentalstresseshighimpactproductivityphysiologicalsoilplantsnutrientacquisitionwaterosmoticbalanceionhomeostasisPlantPlantsaffectedvariouslowtemperaturesdroughtsaltlevelscandisruptnormalcellularfunctioningstressorsoffermajorconstraintmorphologicalbiochemicalparameterstherebyattributingseriouscomplicationscropsricewheatcornConsideringstrategicintricateassociationmicrobiotaknowngrowth-promotingrhizobacteriarootshelpsadaptsurvivechangingconditionsbecomeresilientaidregulationcontentalsoplayroleregulatingBoostingkeyprocessescontributesignificantlyalleviationpromotingdevelopmentreviewexaminesuseincreasingtolerancedifferentfocusinguptakewelleffectscropyieldfoodsecurityGrowthPromotingRhizobacteriaHealth:PerspectiveStudyUndergroundInteractionabioticagriculturalsustainabilityrhizosphere

Similar Articles

Cited By