Technologies for pollutant removal and resource recovery from blackwater: a review.

Wei Zhang, Huaqiang Chu, Libin Yang, Xiaogang You, Zhenjiang Yu, Yalei Zhang, Xuefei Zhou
Author Information
  1. Wei Zhang: State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China.
  2. Huaqiang Chu: State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China.
  3. Libin Yang: State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China.
  4. Xiaogang You: State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China.
  5. Zhenjiang Yu: State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China.
  6. Yalei Zhang: State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China.
  7. Xuefei Zhou: State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 China.

Abstract

Blackwater (BW), consisting of feces, urine, flushing water and toilet paper, makes up an important portion of domestic wastewater. The improper disposal of BW may lead to environmental pollution and disease transmission, threatening the sustainable development of the world. Rich in nutrients and organic matter, BW could be treated for resource recovery and reuse through various approaches. Aimed at providing guidance for the future development of BW treatment and resource recovery, this paper presented a literature review of BWs produced in different countries and types of toilets, including their physiochemical characteristics, and current treatment and resource recovery strategies. The degradation and utilization of carbon (C), nitrogen (N) and phosphorus (P) within BW are underlined. The performance of different systems was classified and summarized. Among all the treating systems, biological and ecological systems have been long and widely applied for BW treatment, showing their universality and operability in nutrients and energy recovery, but they are either slow or ineffective in removal of some refractory pollutants. Novel processes, especially advanced oxidation processes (AOPs), are becoming increasingly extensively studied in BW treatment because of their high efficiency, especially for the removal of micropollutants and pathogens. This review could serve as an instructive guidance for the design and optimization of BW treatment technologies, aiming to help in the fulfilment of sustainable human excreta management.

Keywords

References

  1. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2014;49(8):948-54 [PMID: 24766596]
  2. Sci Total Environ. 2018 Dec 15;645:1620-1629 [PMID: 30248879]
  3. Chemosphere. 2018 Mar;194:504-514 [PMID: 29241124]
  4. Nature. 2012 Aug 2;488(7409):32 [PMID: 22859190]
  5. Sci Total Environ. 2020 Feb 25;705:135986 [PMID: 31841910]
  6. Sci Total Environ. 2020 Feb 10;703:135469 [PMID: 31732183]
  7. Waste Manag. 2021 Jul 15;131:453-461 [PMID: 34265699]
  8. Chemosphere. 2020 Nov;259:127372 [PMID: 32599379]
  9. J Environ Manage. 2019 Aug 1;243:78-87 [PMID: 31082754]
  10. Chemosphere. 2018 Nov;210:745-752 [PMID: 30036822]
  11. Water Res. 2014 Jan 1;48:632-42 [PMID: 24183558]
  12. Sci Total Environ. 2016 Jan 15;541:8-22 [PMID: 26398446]
  13. Bioresour Technol. 2020 Mar;300:122673 [PMID: 31948770]
  14. Bioresour Technol. 2003 Apr;87(2):155-9 [PMID: 12765354]
  15. Front Microbiol. 2022 Jul 25;13:888266 [PMID: 35958124]
  16. Water Air Soil Pollut. 2018;229(8):255 [PMID: 30237637]
  17. Indian J Med Res. 2019 Jan;149(Suppl):S73-S75 [PMID: 31070181]
  18. Crit Rev Environ Sci Technol. 2015 Sep 2;45(17):1827-1879 [PMID: 26246784]
  19. Bioresour Technol. 2022 Jul;355:127295 [PMID: 35550923]
  20. Bioresour Technol. 2017 Dec;245(Pt A):801-809 [PMID: 28926912]
  21. Water Res. 2013 Sep 1;47(13):4680-91 [PMID: 23770482]
  22. Sep Purif Technol. 2020 Dec 15;253:117547 [PMID: 33335447]
  23. Environ Int. 2018 Nov;120:246-261 [PMID: 30103124]
  24. Bioresour Technol. 2009 Feb;100(3):1061-8 [PMID: 18778934]
  25. Water Sci Technol. 2015;71(5):795-800 [PMID: 25768229]
  26. Water Sci Technol. 2013;67(9):1901-7 [PMID: 23656931]
  27. Water Res. 2016 Mar 1;90:167-175 [PMID: 26724450]
  28. Sci Total Environ. 2019 Jun 15;669:129-139 [PMID: 30878921]
  29. Water Res X. 2019 Feb 01;2:100020 [PMID: 31119215]
  30. Water Res. 2019 Sep 1;160:249-258 [PMID: 31152950]
  31. Environ Sci (Camb). 2018;4(10):1439-1450 [PMID: 33365135]
  32. Water Res. 2017 Mar 1;110:297-312 [PMID: 28038416]
  33. Chemosphere. 2018 Dec;212:1030-1037 [PMID: 30286532]
  34. Water Sci Technol. 2007;55(7):187-94 [PMID: 17506437]
  35. Sci Total Environ. 2020 Nov 15;743:140747 [PMID: 32663687]
  36. Environ Technol. 2016 Sep;37(18):2368-78 [PMID: 26853844]
  37. J Environ Manage. 2019 Dec 1;251:109599 [PMID: 31561140]
  38. Bioresour Technol. 2018 Feb;249:175-181 [PMID: 29040852]
  39. J Environ Manage. 2021 Jan 15;278(Pt 2):111552 [PMID: 33129024]
  40. Environ Sci Pollut Res Int. 2017 Oct;24(30):23441-23452 [PMID: 28918574]
  41. Int J Hyg Environ Health. 2021 Mar;232:113670 [PMID: 33310349]
  42. Water Sci Technol. 2019 Feb;79(4):718-730 [PMID: 30975938]
  43. Environ Sci Technol. 2022 Jan 18;56(2):699-706 [PMID: 34982549]
  44. Water Res. 2018 Nov 1;144:553-560 [PMID: 30077914]
  45. Environ Sci Technol. 2005 Oct 15;39(20):7909-14 [PMID: 16295855]
  46. Water Res. 2008 Oct;42(16):4334-40 [PMID: 18774157]
  47. Chemosphere. 2022 Jan;286(Pt 2):131729 [PMID: 34388871]
  48. Environ Sci Technol. 2015 Oct 20;49(20):12450-6 [PMID: 26389714]
  49. Environ Res. 2022 Jun;209:112860 [PMID: 35123965]
  50. RSC Adv. 2021 Nov 3;11(56):35525-35535 [PMID: 35493188]
  51. Front Microbiol. 2017 Sep 11;8:1742 [PMID: 28955317]
  52. Water Res. 2018 Sep 1;140:191-199 [PMID: 29715643]
  53. ACS Sustain Chem Eng. 2018 Mar 5;6(3):3135-3142 [PMID: 29607266]
  54. J Environ Manage. 2016 Mar 15;169:46-57 [PMID: 26720329]
  55. Water Res. 2005 Sep;39(15):3657-67 [PMID: 16054670]
  56. Sci Total Environ. 2005 Sep 15;348(1-3):151-63 [PMID: 16162321]
  57. Indoor Air. 2018 Jan;28(1):73-79 [PMID: 28683156]
  58. Chemosphere. 2020 Feb;241:125101 [PMID: 31683431]
  59. N Biotechnol. 2013 Jun 25;30(5):573-80 [PMID: 23403217]
  60. Environ Technol. 2016;37(14):1723-32 [PMID: 26672384]
  61. Sci Total Environ. 2016 Apr 1;548-549:72-81 [PMID: 26799809]
  62. Water Res. 2007 Jul;41(13):2893-902 [PMID: 17524448]
  63. Water Sci Technol. 2011;63(6):1247-54 [PMID: 21436564]
  64. Water Environ Res. 2017 Aug 1;89(8):744-751 [PMID: 28743328]
  65. Sci Total Environ. 2015 Jul 1;520:213-21 [PMID: 25817758]
  66. Sci Total Environ. 2020 Nov 10;742:140541 [PMID: 32629261]
  67. Water Res. 2005 Jan-Feb;39(2-3):436-48 [PMID: 15644252]
  68. J Environ Manage. 2018 Jun 15;216:347-356 [PMID: 28941832]
  69. Sci Total Environ. 2021 Aug 10;781:146694 [PMID: 33812109]
  70. Water Res X. 2020 Apr 08;7:100051 [PMID: 32462136]
  71. Gates Open Res. 2018 Oct 5;2:50 [PMID: 30706055]
  72. Environ Sci Technol. 2015 Oct 6;49(19):11292-302 [PMID: 26370517]
  73. Bioresour Technol. 2007 Jul;98(9):1734-40 [PMID: 16935497]
  74. Sci Total Environ. 2020 Feb 10;703:135530 [PMID: 31767294]
  75. Bioresour Technol. 2013 Feb;130:584-91 [PMID: 23334014]
  76. Water Sci Technol. 2015;71(9):1407-13 [PMID: 25945859]
  77. Water Environ Res. 2011 Aug;83(8):714-21 [PMID: 21905408]
  78. Environ Technol. 2015 May-Jun;36(9-12):1584-93 [PMID: 25495947]
  79. Environ Sci Pollut Res Int. 2021 Apr;28(16):19901-19910 [PMID: 33409999]
  80. Bioresour Technol. 2020 Nov;316:123891 [PMID: 32777719]
  81. Front Mol Biosci. 2022 Jun 28;9:865129 [PMID: 35836936]
  82. Front Environ Sci Eng. 2022;16(6):70 [PMID: 34608423]
  83. Sep Sci Technol. 2018 Feb 12;53(9):1372-1382 [PMID: 33551521]
  84. Water Sci Technol. 2009;59(9):1785-91 [PMID: 19448314]
  85. Water Res. 2007 Jan;41(2):458-66 [PMID: 17126877]
  86. Waste Manag. 2016 Oct;56:158-65 [PMID: 27436236]
  87. J Hazard Mater. 2016 Feb 13;303:41-7 [PMID: 26513562]
  88. Water Sci Technol. 2010;61(1):97-105 [PMID: 20057095]
  89. Water Res. 2016 Apr 1;92:164-72 [PMID: 26854604]
  90. Bioresour Technol. 2011 Mar;102(6):4333-40 [PMID: 21239168]
  91. Environ Technol. 2013 Sep-Oct;34(17-20):2717-25 [PMID: 24527634]
  92. Water Sci Technol. 2018 Feb;77(3-4):855-858 [PMID: 29488947]
  93. J Environ Manage. 2019 Dec 1;251:109552 [PMID: 31557672]
  94. Water Sci Technol. 2006;53(9):159-68 [PMID: 16841739]
  95. J Hazard Mater. 2019 Mar 5;365:44-52 [PMID: 30408686]
  96. Water Res. 2005 Nov;39(19):4749-54 [PMID: 16278005]
  97. Sci Total Environ. 2020 Apr 15;713:136706 [PMID: 32019042]
  98. Bioresour Technol. 2019 Aug;285:121351 [PMID: 31029486]
  99. Water Sci Technol. 2009;59(11):2145-52 [PMID: 19494453]
  100. Am J Trop Med Hyg. 2003 Oct;69(4):398-405 [PMID: 14640500]
  101. Bioresour Technol. 2016 Sep;215:304-313 [PMID: 27005786]
  102. Water Sci Technol. 2018 Feb;77(3-4):1137-1148 [PMID: 29488977]
  103. J Hazard Mater. 2014 Jun 15;274:229-36 [PMID: 24794814]
  104. Water Environ J. 2017 Nov;31(4):545-551 [PMID: 29242713]
  105. Bioresour Technol. 2018 Dec;269:520-531 [PMID: 30181020]
  106. J Environ Manage. 2019 Jun 15;240:273-284 [PMID: 30952048]
  107. Water Sci Technol. 2013;67(7):1403-24 [PMID: 23552228]
  108. Environ Sci Pollut Res Int. 2022 Aug;29(39):58561-58589 [PMID: 35780273]
  109. Environ Technol. 2019 Jun;40(14):1780-1792 [PMID: 29345536]
  110. Chemosphere. 2019 Oct;233:462-471 [PMID: 31181493]

Word Cloud

Created with Highcharts 10.0.0BWrecoverytreatmentresourcedevelopmentreviewsystemsremovalBlackwatertoiletpapersustainablenutrientsreuseguidancedifferentprocessesespeciallyconsistingfecesurineflushingwatermakesimportantportiondomesticwastewaterimproperdisposalmayleadenvironmentalpollutiondiseasetransmissionthreateningworldRichorganicmattertreatedvariousapproachesAimedprovidingfuturepresentedliteratureBWsproducedcountriestypestoiletsincludingphysiochemicalcharacteristicscurrentstrategiesdegradationutilizationcarbonCnitrogenNphosphorusPwithinunderlinedperformanceclassifiedsummarizedAmongtreatingbiologicalecologicallongwidelyappliedshowinguniversalityoperabilityenergyeitherslowineffectiverefractorypollutantsNoveladvancedoxidationAOPsbecomingincreasinglyextensivelystudiedhighefficiencymicropollutantspathogensserveinstructivedesignoptimizationtechnologiesaiminghelpfulfilmenthumanexcretamanagementTechnologiespollutantblackwater:NutrientSanitationSustainableWaterWater-flushing

Similar Articles

Cited By

No available data.