Virtual Fly Brain-An interactive atlas of the nervous system.

Robert Court, Marta Costa, Clare Pilgrim, Gillian Millburn, Alex Holmes, Alex McLachlan, Aoife Larkin, Nicolas Matentzoglu, Huseyin Kir, Helen Parkinson, Nicolas H Brown, Cahir J O'Kane, J Douglas Armstrong, Gregory S X E Jefferis, David Osumi-Sutherland
Author Information
  1. Robert Court: School of Informatics, University of Edinburgh, Edinburgh, United Kingtom.
  2. Marta Costa: Department of Zoology, University of Cambridge, Cambridge, United Kingtom.
  3. Clare Pilgrim: Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingtom.
  4. Gillian Millburn: Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingtom.
  5. Alex Holmes: Department of Genetics, University of Cambridge, Cambridge, United Kingtom.
  6. Alex McLachlan: Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingtom.
  7. Aoife Larkin: Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingtom.
  8. Nicolas Matentzoglu: European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingtom.
  9. Huseyin Kir: European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingtom.
  10. Helen Parkinson: European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingtom.
  11. Nicolas H Brown: Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingtom.
  12. Cahir J O'Kane: Department of Genetics, University of Cambridge, Cambridge, United Kingtom.
  13. J Douglas Armstrong: School of Informatics, University of Edinburgh, Edinburgh, United Kingtom.
  14. Gregory S X E Jefferis: MRC Laboratory for Molecular Biology, Cambridge, United Kingtom.
  15. David Osumi-Sutherland: European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingtom.

Abstract

As a model organism, is uniquely placed to contribute to our understanding of how brains control complex behavior. Not only does it have complex adaptive behaviors, but also a uniquely powerful genetic toolkit, increasingly complete dense connectomic maps of the central nervous system and a rapidly growing set of transcriptomic profiles of cell types. But this also poses a challenge: Given the massive amounts of available data, how are researchers to Find, Access, Integrate and Reuse (FAIR) relevant data in order to develop an integrated anatomical and molecular picture of circuits, inform hypothesis generation, and find reagents for experiments to test these hypotheses? The Virtual Fly Brain (virtualflybrain.org) web application & API provide a solution to this problem, using FAIR principles to integrate 3D images of neurons and brain regions, connectomics, transcriptomics and reagent expression data covering the whole CNS in both larva and adult. Users can search for neurons, neuroanatomy and reagents by name, location, or connectivity, text search, clicking on 3D images, search-by-image, and queries by type (e.g., dopaminergic neuron) or properties (e.g., synaptic input in the antennal lobe). Returned results include cross-registered 3D images that can be explored in linked 2D and 3D browsers or downloaded under open licenses, and extensive descriptions of cell types and regions curated from the literature. These solutions are potentially extensible to cover similar atlasing and data integration challenges in vertebrates.

Keywords

References

  1. Curr Biol. 2015 May 18;25(10):1249-58 [PMID: 25866397]
  2. J Biomed Semantics. 2013 Oct 18;4(1):32 [PMID: 24139062]
  3. Genetics. 2010 Oct;186(2):735-55 [PMID: 20697123]
  4. Elife. 2020 Sep 07;9: [PMID: 32880371]
  5. Nucleic Acids Res. 2021 Jan 8;49(D1):D899-D907 [PMID: 33219682]
  6. Neuron. 2020 Dec 23;108(6):1045-1057.e6 [PMID: 33125872]
  7. Cell. 2018 Jul 26;174(3):730-743.e22 [PMID: 30033368]
  8. Front Neuroinform. 2022 Jul 20;16:896292 [PMID: 35935535]
  9. Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):E2967-76 [PMID: 25964354]
  10. Elife. 2023 Feb 16;12: [PMID: 36795088]
  11. Cell. 2022 Jul 21;185(15):2739-2755 [PMID: 35868277]
  12. Neuron. 2020 Sep 23;107(6):1071-1079.e2 [PMID: 32931755]
  13. Science. 2022 Mar 4;375(6584):eabk2432 [PMID: 35239393]
  14. Neuron. 2016 Jul 20;91(2):293-311 [PMID: 27373836]
  15. Nature. 2021 Jan;589(7840):88-95 [PMID: 33149298]
  16. Cell Rep. 2012 Oct 25;2(4):991-1001 [PMID: 23063364]
  17. BMC Bioinformatics. 2024 Mar 15;25(1):114 [PMID: 38491365]
  18. Elife. 2020 Jun 25;9: [PMID: 32584254]
  19. Elife. 2023 Feb 23;12: [PMID: 36820523]
  20. Database (Oxford). 2012 May 02;2012:bas024 [PMID: 22554788]
  21. Neuron. 2014 Feb 19;81(4):755-65 [PMID: 24559671]
  22. Elife. 2020 Apr 14;9: [PMID: 32286229]
  23. Sci Data. 2016 Mar 15;3:160018 [PMID: 26978244]
  24. Curr Biol. 2013 Apr 22;23(8):633-43 [PMID: 23541733]
  25. Elife. 2021 Feb 22;10: [PMID: 33616035]
  26. Database (Oxford). 2021 Oct 26;2021: [PMID: 34697637]
  27. Cell. 2007 Mar 23;128(6):1187-203 [PMID: 17382886]
  28. BMC Bioinformatics. 2012 Jan 25;13 Suppl 1:S2 [PMID: 22373327]
  29. Nature. 2015 Apr 30;520(7549):633-9 [PMID: 25896325]
  30. Genetics. 2022 Apr 4;220(4): [PMID: 35266522]
  31. Bioinformatics. 2012 Feb 1;28(3):411-5 [PMID: 22180411]
  32. Curr Biol. 2011 Jan 11;21(1):1-11 [PMID: 21129968]
  33. Curr Opin Neurobiol. 2019 Jun;56:125-134 [PMID: 30703584]
  34. Elife. 2021 Oct 26;10: [PMID: 34696825]
  35. Nat Commun. 2019 Jun 21;10(1):2736 [PMID: 31227718]
  36. Neuron. 2006 Nov 9;52(3):425-36 [PMID: 17088209]
  37. BMC Bioinformatics. 2019 Jul 29;20(1):407 [PMID: 31357927]
  38. IEEE Trans Inf Technol Biomed. 2003 Mar;7(1):16-25 [PMID: 12670015]
  39. BMC Bioinformatics. 2012 Jan 03;13:1 [PMID: 22214541]
  40. Cell. 2021 Feb 4;184(3):759-774.e18 [PMID: 33400916]
  41. Philos Trans R Soc Lond B Biol Sci. 2018 Sep 10;373(1758): [PMID: 30201843]
  42. Cell. 2018 Aug 9;174(4):982-998.e20 [PMID: 29909982]
  43. Cell. 2024 May 9;187(10):2574-2594.e23 [PMID: 38729112]
  44. Elife. 2020 Jan 15;9: [PMID: 31939737]
  45. PLoS One. 2020 Dec 31;15(12):e0236495 [PMID: 33382698]
  46. Elife. 2019 May 21;8: [PMID: 31112130]
  47. Curr Biol. 2013 Apr 22;23(8):644-55 [PMID: 23541729]
  48. Nat Neurosci. 2020 Dec;23(12):1637-1643 [PMID: 32929244]
  49. CEUR Workshop Proc. 2014 Oct;1265:85-96 [PMID: 29724079]
  50. Database (Oxford). 2022 Oct 8;2022: [PMID: 36208225]
  51. Cell Tissue Res. 1990 Oct;262(1):9-34 [PMID: 2124174]
  52. Bioinformatics. 2012 May 1;28(9):1262-9 [PMID: 22402613]
  53. Curr Biol. 2020 Aug 17;30(16):3183-3199.e6 [PMID: 32619485]
  54. Bioinformatics. 2009 Aug 1;25(15):1984-6 [PMID: 19376822]
  55. Nat Methods. 2022 Jan;19(1):119-128 [PMID: 34949809]
  56. Genetics. 2017 Apr;205(4):1353-1364 [PMID: 28360126]

Grants

  1. /Wellcome Trust
  2. BB/G02233X/1/Biotechnology and Biological Sciences Research Council
  3. MC_U105188491/Medical Research Council

Word Cloud

Created with Highcharts 10.0.0data3DFAIRimagesuniquelycomplexalsonervoussystemcelltypesreagentsVirtualFlyneuronsregionsconnectomicstranscriptomicscansearchegatlasmodelorganismplacedcontributeunderstandingbrainscontrolbehavioradaptivebehaviorspowerfulgenetictoolkitincreasinglycompletedenseconnectomicmapscentralrapidlygrowingsettranscriptomicprofilesposeschallenge:GivenmassiveamountsavailableresearchersFindAccessIntegrateReuserelevantorderdevelopintegratedanatomicalmolecularpicturecircuitsinformhypothesisgenerationfindexperimentstesthypotheses?Brainvirtualflybrainorgwebapplication&APIprovidesolutionproblemusingprinciplesintegratebrainreagentexpressioncoveringwholeCNSlarvaadultUsersneuroanatomynamelocationconnectivitytextclickingsearch-by-imagequeriestypedopaminergicneuronpropertiessynapticinputantennallobeReturnedresultsincludecross-registeredexploredlinked2DbrowsersdownloadedopenlicensesextensivedescriptionscuratedliteraturesolutionspotentiallyextensiblecoversimilaratlasingintegrationchallengesvertebratesBrain-Aninteractivedrosophilaneurobiologyontology

Similar Articles

Cited By