A discrete model for the evaluation of public policies: The case of Colombia during the COVID-19 pandemic.

Alexandra Catano-Lopez, Daniel Rojas-Diaz, Diana Paola Lizarralde-Bejarano, Mar��a Eugenia Puerta Yepes
Author Information
  1. Alexandra Catano-Lopez: Department of Mathematical Sciences, Universidad EAFIT, Medell��n, Colombia. ORCID
  2. Daniel Rojas-Diaz: Department of Mathematical Sciences, Universidad EAFIT, Medell��n, Colombia.
  3. Diana Paola Lizarralde-Bejarano: Department of Mathematical Sciences, Universidad EAFIT, Medell��n, Colombia. ORCID
  4. Mar��a Eugenia Puerta Yepes: Department of Mathematical Sciences, Universidad EAFIT, Medell��n, Colombia. ORCID

Abstract

In mathematical epidemiology, it is usual to implement compartmental models to study the transmission of diseases, allowing comprehension of the outbreak dynamics. Thus, it is necessary to identify the natural history of the disease and to establish promissory relations between the structure of a mathematical model, as well as its parameters, with control-related strategies (real interventions) and relevant socio-cultural behaviors. However, we identified gaps between the model creation and its implementation for the use of decision-makers for policy design. We aim to cover these gaps by proposing a discrete mathematical model with parameters having intuitive meaning to be implemented to help decision-makers in control policy design. The model considers novel contagion probabilities, quarantine, and diffusion processes to represent the recovery and mortality dynamics. We applied mathematical model for COVID-19 to Colombia and some of its localities; moreover, the model structure could be adapted for other diseases. Subsequently, we implemented it on a web platform (MathCOVID) for the usage of decision-makers to simulate the effect of policies such as lock-downs, social distancing, identification in the contagion network, and connectivity among populations. Furthermore, it was possible to assess the effects of migration and vaccination strategies as time-dependent inputs. Finally, the platform was capable of simulating the effects of applying one or more policies simultaneously.

References

  1. J Indian Inst Sci. 2020;100(4):793-807 [PMID: 33144763]
  2. BMJ. 2022 Jan 11;376:o66 [PMID: 35017144]
  3. PLoS One. 2020 Mar 11;15(3):e0229668 [PMID: 32160217]
  4. Ann Intern Med. 2020 Sep 1;173(5):362-367 [PMID: 32491919]
  5. PLoS One. 2021 Jun 15;16(6):e0252271 [PMID: 34129608]
  6. Comput Math Methods Med. 2011;2011:527610 [PMID: 21860658]
  7. Sci Rep. 2020 Sep 25;10(1):15763 [PMID: 32978440]
  8. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  9. Nat Med. 2020 Jun;26(6):855-860 [PMID: 32322102]
  10. Eur Phys J Plus. 2020;135(7):599 [PMID: 32834915]
  11. Epidemics. 2018 Mar;22:56-61 [PMID: 28038870]
  12. Proc Biol Sci. 2015 Dec 22;282(1821):20152026 [PMID: 26674948]
  13. BMJ. 2020 May 14;369:m1849 [PMID: 32409561]
  14. Bull Math Biol. 2022 Sep 22;84(11):127 [PMID: 36138179]
  15. Bull Math Biol. 2013 Oct;75(10):1716-46 [PMID: 23797790]
  16. Environ Pollut. 2020 Oct;265(Pt B):115010 [PMID: 32570023]
  17. Math Comput Model. 2004 Dec;40(13):1491-1506 [PMID: 32288200]
  18. PLoS One. 2020 Oct 23;15(10):e0241165 [PMID: 33095811]
  19. N Engl J Med. 2020 Apr 30;382(18):1708-1720 [PMID: 32109013]
  20. PLoS Comput Biol. 2017 Nov 6;13(11):e1005801 [PMID: 29107987]
  21. Sci Rep. 2021 Feb 10;11(1):3451 [PMID: 33568716]
  22. PLoS One. 2020 Mar 31;15(3):e0230405 [PMID: 32231374]
  23. PLoS One. 2014 Apr 08;9(4):e94130 [PMID: 24714027]
  24. J Aerosol Med Pulm Drug Deliv. 2020 Dec;33(6):300-304 [PMID: 32783675]
  25. Int J Geriatr Psychiatry. 2020 Dec;35(12):1466-1467 [PMID: 32364283]
  26. J Biol Dyn. 2018 Dec;12(1):16-38 [PMID: 29157162]
  27. Int J Environ Res Public Health. 2021 Nov 26;18(23): [PMID: 34886171]
  28. Comput Math Methods Med. 2021 Mar 30;2021:6664483 [PMID: 33815565]
  29. PLoS One. 2020 Dec 22;15(12):e0244174 [PMID: 33351835]
  30. Numer Methods Partial Differ Equ. 2020 Nov 24;: [PMID: 33362342]
  31. Signal Transduct Target Ther. 2022 Feb 10;7(1):45 [PMID: 35145066]
  32. Clin Microbiol Infect. 2013 Nov;19(11):999-1005 [PMID: 24266045]
  33. J Theor Biol. 2017 Jan 7;412:74-85 [PMID: 27769686]
  34. Ind Eng Chem Res. 2021 Feb 02;60(11):4251-4260 [PMID: 37556235]
  35. Physica D. 2020 Dec;413:132674 [PMID: 32834252]
  36. Bull Math Biol. 2015 Nov;77(11):2004-34 [PMID: 26489419]
  37. Appl Math Lett. 2021 Jan;111:106617 [PMID: 32834475]
  38. Math Biosci Eng. 2020 Mar 11;17(3):2708-2724 [PMID: 32233562]
  39. Nat Med. 2020 May;26(5):672-675 [PMID: 32296168]
  40. Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):11875-11877 [PMID: 32404416]

MeSH Term

Humans
COVID-19
Pandemics
Colombia
Communicable Disease Control
Public Policy