Spatial and temporal (non)binding of audiovisual rhythms in sensorimotor synchronisation.

Olivia Morgan Lapenta, Peter E Keller, Sylvie Nozaradan, Manuel Varlet
Author Information
  1. Olivia Morgan Lapenta: The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia. oliviamlapenta@gmail.com. ORCID
  2. Peter E Keller: The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia. ORCID
  3. Sylvie Nozaradan: The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia. ORCID
  4. Manuel Varlet: The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia. ORCID

Abstract

Human movement synchronisation with moving objects strongly relies on visual input. However, auditory information also plays an important role, since real environments are intrinsically multimodal. We used electroencephalography (EEG) frequency tagging to investigate the selective neural processing and integration of visual and auditory information during motor tracking and tested the effects of spatial and temporal congruency between audiovisual modalities. EEG was recorded while participants tracked with their index finger a red flickering (rate f = 15 Hz) dot oscillating horizontally on a screen. The simultaneous auditory stimulus was modulated in pitch (rate f = 32 Hz) and lateralised between left and right audio channels to induce perception of a periodic displacement of the sound source. Audiovisual congruency was manipulated in terms of space in Experiment 1 (no motion, same direction or opposite direction), and timing in Experiment 2 (no delay, medium delay or large delay). For both experiments, significant EEG responses were elicited at f and f tagging frequencies. It was also hypothesised that intermodulation products corresponding to the nonlinear integration of visual and auditory stimuli at frequencies f ± f would be elicited, due to audiovisual integration, especially in Congruent conditions However, these components were not observed. Moreover, synchronisation and EEG results were not influenced by congruency manipulations, which invites further exploration of the conditions which may modulate audiovisual processing and the motor tracking of moving objects.

Keywords

References

  1. J Vis. 2015;15(6):4 [PMID: 26024451]
  2. J Neurosci. 2017 May 10;37(19):4942-4953 [PMID: 28411268]
  3. Hum Mov Sci. 2017 Dec;56(Pt B):71-87 [PMID: 29107820]
  4. Cereb Cortex. 2015 Mar;25(3):736-47 [PMID: 24108804]
  5. Atten Percept Psychophys. 2020 Oct;82(7):3544-3557 [PMID: 32533526]
  6. Neurosci Lett. 2018 Sep 14;683:150-159 [PMID: 30075282]
  7. Exp Brain Res. 2002 Dec;147(3):332-43 [PMID: 12428141]
  8. Neuroimage. 2020 Feb 1;206:116303 [PMID: 31654761]
  9. Neuroimage. 2016 Aug 15;137:21-33 [PMID: 27138205]
  10. Cereb Cortex. 2019 Jun 1;29(6):2366-2383 [PMID: 29750259]
  11. J Neurosci. 2013 May 15;33(20):8841-9 [PMID: 23678126]
  12. Cognition. 2004 Jul;92(3):B13-23 [PMID: 15019556]
  13. Percept Psychophys. 2008 Oct;70(7):1207-16 [PMID: 18927004]
  14. Nat Neurosci. 2007 Jan;10(1):117-25 [PMID: 17173045]
  15. Nature. 1976 Dec 23-30;264(5588):746-8 [PMID: 1012311]
  16. Brain Res. 2011 Aug 23;1408:27-40 [PMID: 21782159]
  17. J Cogn Neurosci. 2018 Mar;30(3):393-410 [PMID: 29257716]
  18. Neuroimage. 2019 Oct 1;199:480-494 [PMID: 31173903]
  19. PLoS Comput Biol. 2017 Jul 10;13(7):e1005546 [PMID: 28692700]
  20. Comput Intell Neurosci. 2011;2011:156869 [PMID: 21253357]
  21. Hum Brain Mapp. 2012 Apr;33(4):969-78 [PMID: 21692141]
  22. Neuropsychologia. 2020 Jan;136:107283 [PMID: 31783079]
  23. Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):8221-8226 [PMID: 30037989]
  24. Hum Brain Mapp. 2021 Mar;42(4):1138-1152 [PMID: 33206441]
  25. Neuroimage. 2012 Mar;60(1):21-8 [PMID: 22155324]
  26. J Neuroeng Rehabil. 2012 Oct 10;9:79 [PMID: 23046683]
  27. Curr Biol. 2004 Feb 3;14(3):257-62 [PMID: 14761661]
  28. Int J Psychophysiol. 2010 Jan;75(1):3-15 [PMID: 19819271]
  29. Neuroimage. 2013 Feb 15;67:313-21 [PMID: 23207574]
  30. Exp Brain Res. 2005 Oct;166(3-4):538-47 [PMID: 16143858]
  31. Neuroimage. 2012 Apr 2;60(2):1478-89 [PMID: 22305992]
  32. J Neurosci. 2011 Jul 13;31(28):10234-40 [PMID: 21753000]
  33. J Cogn Neurosci. 2021 Apr;33(4):695-724 [PMID: 33416444]
  34. Trends Neurosci. 2005 May;28(5):264-71 [PMID: 15866201]
  35. Brain Res Cogn Brain Res. 2002 Jun;14(1):139-46 [PMID: 12063137]
  36. Exp Brain Res. 1995;106(3):485-7 [PMID: 8983992]
  37. PLoS One. 2012;7(9):e44082 [PMID: 23028488]
  38. Exp Brain Res. 2019 Oct;237(10):2705-2713 [PMID: 31420687]
  39. Exp Brain Res. 2009 Sep;198(2-3):373-82 [PMID: 19396433]
  40. Magn Reson Imaging. 2008 Sep;26(7):1041-54 [PMID: 18479877]

Grants

  1. DP170104322/Centre of Excellence in Cognition and its Disorders, Australian Research Council
  2. DP220103047/Australian Research Council
  3. SFRH/BPD/72710/2010/Fundação para a Ciência e a Tecnologia

MeSH Term

Humans
Auditory Perception
Visual Perception
Electroencephalography
Sound
Time Factors
Acoustic Stimulation
Photic Stimulation

Word Cloud

Created with Highcharts 10.0.0synchronisationauditoryEEGintegrationaudiovisualvisualtaggingtrackingcongruencydelaymovingobjectsHoweverinformationalsoprocessingmotortemporalrateExperimentdirectionelicitedffrequenciesconditionsHumanmovementstronglyreliesinputplaysimportantrolesincerealenvironmentsintrinsicallymultimodalusedelectroencephalographyfrequencyinvestigateselectiveneuraltestedeffectsspatialmodalitiesrecordedparticipantstrackedindexfingerredflickeringf = 15 Hzdotoscillatinghorizontallyscreensimultaneousstimulusmodulatedpitchf = 32 HzlateralisedleftrightaudiochannelsinduceperceptionperiodicdisplacementsoundsourceAudiovisualmanipulatedtermsspace1motionoppositetiming2mediumlargeexperimentssignificantresponseshypothesisedintermodulationproductscorrespondingnonlinearstimulif ± fdueespeciallyCongruentcomponentsobservedMoreoverresultsinfluencedmanipulationsinvitesexplorationmaymodulateSpatialnonbindingrhythmssensorimotorFrequencyMotorMovementMultisensorySteady-stateevokedpotentials

Similar Articles

Cited By

No available data.