Structural mechanism of nucleosome targeting by OCT4 for pluripotency.

Ruifang Guan, Tengfei Lian, Bing-Rui Zhou, Yawen Bai
Author Information
  1. Ruifang Guan: Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.
  2. Tengfei Lian: Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.
  3. Bing-Rui Zhou: Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.
  4. Yawen Bai: Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

Abstract

Pioneer transcription factors are essential for cell fate changes by targeting closed chromatin. OCT4 is a crucial pioneer factor that can induce cell reprogramming. However, the structural basis of how pioneer factors recognize the nucleosomal DNA targets is unknown. Here, we determine the high-resolution structures of the nucleosome containing human DNA and its complexes with the OCT4 DNA binding region. Three OCT4s bind the pre-positioned nucleosome by recognizing non-canonical DNA motifs. Two use their POUS domains by forming extensive hydrogen bonds. The other uses the POUS-loop-POUHD region; POUHD serves as a wedge to unwrap ∼25 base pair DNA. Biochemical studies suggest that multiple OCT4s cooperatively open the H1-condensed nucleosome array containing the nucleosome. Our study suggests a mechanism whereby OCT4s target the nucleosome by forming multivalent interactions with nucleosomal motifs, unwrapping nucleosomal DNA, evicting H1, and cooperatively open closed chromatin to initiate cell reprogramming.

References

  1. Cell. 2013 Nov 7;155(4):778-92 [PMID: 24209617]
  2. Protein Sci. 1999 Aug;8(8):1668-74 [PMID: 10452611]
  3. Mol Cell. 2021 Apr 15;81(8):1640-1650 [PMID: 33689750]
  4. Nat Cell Biol. 2021 Aug;23(8):834-845 [PMID: 34354236]
  5. Curr Opin Struct Biol. 2021 Dec;71:59-64 [PMID: 34218163]
  6. Nat Commun. 2019 May 24;10(1):2301 [PMID: 31127102]
  7. Science. 2014 Apr 25;344(6182):376-80 [PMID: 24763583]
  8. Cell. 2012 Nov 21;151(5):994-1004 [PMID: 23159369]
  9. Elife. 2019 Mar 19;8: [PMID: 30888317]
  10. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 [PMID: 20124702]
  11. Mol Cell. 2021 Jan 7;81(1):166-182.e6 [PMID: 33238161]
  12. Cell. 2015 Apr 23;161(3):555-568 [PMID: 25892221]
  13. Science. 2007 Dec 21;318(5858):1917-20 [PMID: 18029452]
  14. Genome Res. 2012 Dec;22(12):2497-506 [PMID: 22960375]
  15. Cell Stem Cell. 2021 Oct 7;28(10):1868-1883.e11 [PMID: 34038708]
  16. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  17. Cell. 2006 Aug 25;126(4):663-76 [PMID: 16904174]
  18. J Mol Biol. 2011 Apr 29;408(2):187-204 [PMID: 21310161]
  19. J Struct Biol. 2015 Nov;192(2):216-21 [PMID: 26278980]
  20. Nat Methods. 2017 Mar;14(3):290-296 [PMID: 28165473]
  21. Nature. 2020 Apr;580(7805):669-672 [PMID: 32350470]
  22. Biophys J. 2020 May 5;118(9):2280-2296 [PMID: 32027821]
  23. Nat Commun. 2020 Aug 18;11(1):4136 [PMID: 32811816]
  24. Sci Rep. 2020 Jul 16;10(1):11832 [PMID: 32678275]
  25. Mol Cell. 2002 Feb;9(2):279-89 [PMID: 11864602]
  26. Nat Commun. 2021 Mar 19;12(1):1763 [PMID: 33741944]
  27. Nat Struct Mol Biol. 2022 Jul;29(7):665-676 [PMID: 35835866]
  28. J Mol Biol. 2005 Feb 4;345(5):957-68 [PMID: 15644197]
  29. Cell. 2018 Dec 13;175(7):1842-1855.e16 [PMID: 30449618]
  30. Nat Rev Mol Cell Biol. 2022 Jul;23(7):449-464 [PMID: 35264768]
  31. Cell. 2019 Jan 24;176(3):419-434 [PMID: 30682370]
  32. Nature. 2018 Oct;562(7725):76-81 [PMID: 30250250]
  33. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [PMID: 20383002]
  34. EMBO J. 1998 Jan 2;17(1):244-54 [PMID: 9427758]
  35. J Struct Biol. 2005 Oct;152(1):36-51 [PMID: 16182563]
  36. Nucleic Acids Res. 2015 May 19;43(9):4381-92 [PMID: 25870414]
  37. J Mol Biol. 2018 Sep 14;430(18 Pt B):3093-3110 [PMID: 29959925]
  38. Annu Rev Genet. 2020 Nov 23;54:367-385 [PMID: 32886547]
  39. Elife. 2018 Nov 09;7: [PMID: 30412051]
  40. Sci Rep. 2016 Feb 15;6:20818 [PMID: 26877091]
  41. Science. 2004 Nov 26;306(5701):1571-3 [PMID: 15567867]
  42. STAR Protoc. 2021 Mar 20;2(2):100396 [PMID: 33786462]
  43. Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20586-20596 [PMID: 32778600]
  44. Science. 2018 Jan 19;359(6373):339-343 [PMID: 29269420]
  45. Nat Methods. 2017 Apr;14(4):331-332 [PMID: 28250466]
  46. Nature. 1997 Sep 18;389(6648):251-60 [PMID: 9305837]
  47. Science. 2020 Jun 26;368(6498):1460-1465 [PMID: 32327602]
  48. Genes Dev. 2014 Dec 15;28(24):2679-92 [PMID: 25512556]
  49. Mol Cell. 2019 Sep 5;75(5):921-932.e6 [PMID: 31303471]
  50. Nature. 2000 Dec 14;408(6814):877-81 [PMID: 11130729]
  51. Mol Cell. 2018 Dec 6;72(5):902-915.e7 [PMID: 30392928]

Word Cloud

Created with Highcharts 10.0.0DNAnucleosomecellOCT4nucleosomalOCT4sfactorstargetingclosedchromatinpioneerreprogrammingcontainingregionmotifsformingcooperativelyopenmechanismPioneertranscriptionessentialfatechangescrucialfactorcaninduceHoweverstructuralbasisrecognizetargetsunknowndeterminehigh-resolutionstructureshumancomplexesbindingThreebindpre-positionedrecognizingnon-canonicalTwousePOUSdomainsextensivehydrogenbondsusesPOUS-loop-POUHDPOUHDserveswedgeunwrap∼25basepairBiochemicalstudiessuggestmultipleH1-condensedarraystudysuggestswherebytargetmultivalentinteractionsunwrappingevictingH1initiateStructuralpluripotency

Similar Articles

Cited By