The Pathogenetic Mechanism for Moyamoya Vasculopathy Including a Possible Trigger Effect of Increased Flow Velocity.

Takeo Abumiya, Miki Fujimura
Author Information
  1. Takeo Abumiya: Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
  2. Miki Fujimura: Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.

Abstract

Moyamoya disease (MMD), which commonly exhibits moyamoya vasculopathy characterized by chronic progressive steno-occlusive lesions in the circle of Willis with "moyamoya" collateral vessels, has been well known for its unique demographic and clinical features. Although the discovery of the susceptibility gene for MMD revealed the factor for its predominance in East Asians, the mechanisms underlying other predominant conditions (females, children, young to middle-aged adults, and anterior circulation) and lesion formation are yet to be determined. As MMD and moyamoya syndrome (MMS), which secondarily produces moyamoya vasculopathy due to pre-existing diseases, have the same vascular lesions despite differences in their original pathogenesis, they may share a common trigger for the development of vascular lesions. Thus, we herein consider a common trigger from a novel perspective on blood flow dynamics. Increased flow velocity in the middle cerebral arteries is an established predictor of stroke in sickle cell disease, which is often complicated by MMS. Flow velocity is also increased in other diseases complicated by MMS (Down syndrome, Graves' disease, irradiation, and meningitis). In addition, increased flow velocity occurs under the predominant conditions of MMD (females, children, young to middle-aged adults, and anterior circulation), suggesting a relationship between flow velocity and susceptibility to moyamoya vasculopathy. Increased flow velocity has also been detected in the non-stenotic intracranial arteries of MMD patients. In a pathogenetic overview of chronic progressive steno-occlusive lesions, a novel perspective including the trigger effect of increased flow velocity may provide insights into the mechanisms underlying their predominant conditions and lesion formation.

Keywords

References

  1. Neuropathology. 2004 Sep;24(3):236-42 [PMID: 15484702]
  2. Ultrasound Med Biol. 1990;16(8):745-61 [PMID: 2095006]
  3. J Neurosurg Pediatr. 2015 Jul;16(1):58-63 [PMID: 25837890]
  4. World Neurosurg. 2017 May;101:731-741 [PMID: 28153617]
  5. PLoS One. 2011;6(7):e22542 [PMID: 21799892]
  6. Pediatr Neurol. 2019 Feb;91:11-19 [PMID: 30424960]
  7. Appl Clin Genet. 2021 Mar 18;14:145-171 [PMID: 33776470]
  8. Front Neurol Neurosci. 2016;40:204-220 [PMID: 27960175]
  9. Clin Neurol Neurosurg. 1997 Oct;99 Suppl 2:S238-40 [PMID: 9409446]
  10. Neurol Med Chir (Tokyo). 2015;55(10):796-804 [PMID: 26369872]
  11. Acta Neurochir (Wien). 2015 May;157(5):755-61 [PMID: 25854598]
  12. Neurol Med Chir (Tokyo). 2012;52(5):245-66 [PMID: 22870528]
  13. Lancet Neurol. 2021 May;20(5):398-408 [PMID: 33894194]
  14. Front Endocrinol (Lausanne). 2019 Oct 17;10:707 [PMID: 31681176]
  15. Lancet Neurol. 2008 Nov;7(11):1056-66 [PMID: 18940695]
  16. Arterioscler Thromb Vasc Biol. 2006 Oct;26(10):2281-7 [PMID: 16873725]
  17. Neurol Med Chir (Tokyo). 2012;52(5):299-303 [PMID: 22688066]
  18. J Neurosurg. 2009 Nov;111(5):936-42 [PMID: 19374496]
  19. J Clin Ultrasound. 2006 Feb;34(2):60-9 [PMID: 16547982]
  20. Sci Rep. 2019 Jun 13;9(1):8614 [PMID: 31197213]
  21. Childs Nerv Syst. 2013 Dec;29(12):2263-9 [PMID: 23653141]
  22. J Clin Neurol. 2008 Jun;4(2):67-74 [PMID: 19513306]
  23. J Appl Physiol (1985). 2017 Nov 1;123(5):1071-1080 [PMID: 28663374]
  24. N Engl J Med. 2009 Mar 19;360(12):1226-37 [PMID: 19297575]
  25. J Vasc Res. 2009;46(6):561-71 [PMID: 19571576]
  26. Stroke. 2014 Apr;45(4):1090-5 [PMID: 24595588]
  27. Clin Neurol Neurosurg. 1997 Oct;99 Suppl 2:S101-5 [PMID: 9409416]
  28. J Neuroimaging. 2013 Jul;23(3):466-72 [PMID: 23157483]
  29. Stroke. 2008 Dec;39(12):3193-200 [PMID: 18787200]
  30. Pediatr Radiol. 2011 May;41 Suppl 1:S153-65 [PMID: 21523592]
  31. Pediatr Res. 2005 Sep;58(3):574-8 [PMID: 16148076]
  32. World Neurosurg. 2020 Aug;140:213-218 [PMID: 32434020]
  33. Eur J Neurol. 2015 Jun;22(6):1012-7 [PMID: 25847099]
  34. Neurol Med Chir (Tokyo). 2012;52(5):267-77 [PMID: 22688062]
  35. Pediatr Neurol. 2019 Jun;95:34-41 [PMID: 30948147]
  36. J Neurosurg. 2020 Oct 23;:1-8 [PMID: 33096527]
  37. Brain Res. 2016 Jul 1;1642:1-9 [PMID: 26972532]
  38. Pediatr Neurol. 2011 Jun;44(6):401-13 [PMID: 21555050]
  39. Stroke. 2011 Dec;42(12):3429-34 [PMID: 21960567]
  40. Ann Neurol. 1997 Nov;42(5):699-704 [PMID: 9392568]
  41. Stroke. 2019 Aug;50(8):1973-1980 [PMID: 31234758]
  42. Semin Neurol. 2019 Aug;39(4):482-494 [PMID: 31533189]
  43. J Hum Genet. 2011 Jan;56(1):34-40 [PMID: 21048783]
  44. Blood. 2002 May 1;99(9):3144-50 [PMID: 11964276]
  45. J Dev Behav Pediatr. 2020 Feb/Mar;41(2):141-144 [PMID: 31593027]
  46. Exp Mol Pathol. 2006 Feb;80(1):38-45 [PMID: 15961075]
  47. Stroke. 1992 Oct;23(10):1427-33 [PMID: 1412579]
  48. Stroke. 2008 Jan;39(1):42-7 [PMID: 18048855]
  49. J Neuroimaging. 2004 Oct;14(4):319-23 [PMID: 15358951]
  50. PLoS One. 2012;7(8):e42890 [PMID: 22912759]
  51. Nat Sci Sleep. 2018 Sep 13;10:287-293 [PMID: 30254502]
  52. Sci Rep. 2018 Feb 26;8(1):3607 [PMID: 29483617]
  53. Crit Care. 2011;15(6):R281 [PMID: 22112693]
  54. Pediatrics. 2006 Oct;118(4):e1100-8 [PMID: 17015501]
  55. World Neurosurg. 2020 Aug;140:276-282 [PMID: 32434013]
  56. Stroke. 2010 Jan;41(1):173-6 [PMID: 19926842]
  57. Stroke. 1994 Nov;25(11):2153-8 [PMID: 7974538]
  58. Neurol Med Chir (Tokyo). 2015;55(3):189-93 [PMID: 25739428]
  59. Neurol Med Chir (Tokyo). 2012;52(5):295-8 [PMID: 22688065]
  60. J Am Heart Assoc. 2019 Oct 15;8(20):e011996 [PMID: 31590595]
  61. No To Hattatsu. 1988 Jul;20(4):279-87 [PMID: 3063307]
  62. J Ultrasound Med. 2005 Apr;24(4):451-7; quiz 459-60 [PMID: 15784763]
  63. Stroke. 2016 Sep;47(9):2229-35 [PMID: 27507861]
  64. Stroke. 2016 Jan;47(1):37-43 [PMID: 26645256]
  65. N Engl J Med. 1998 Jul 2;339(1):5-11 [PMID: 9647873]
  66. Neurosurg Focus. 2021 Sep;51(3):E6 [PMID: 34469862]
  67. Brain Res. 2014 Mar 13;1552:64-71 [PMID: 24440776]
  68. J Neurosurg Sci. 2021 Jun;65(3):277-286 [PMID: 33245218]
  69. J Neurol Sci. 2018 Feb 15;385:57-63 [PMID: 29406914]
  70. Pediatr Blood Cancer. 2013 Sep;60(9):1499-502 [PMID: 23625812]
  71. Tohoku J Exp Med. 2015;236(1):45-53 [PMID: 25971859]
  72. Stroke. 2011 Apr;42(4):1138-9 [PMID: 21350209]
  73. Blood. 2016 Apr 7;127(14):1814-22 [PMID: 26851292]
  74. Acta Neurochir (Wien). 2012 Dec;154(12):2151-7 [PMID: 22935819]
  75. J Clin Ultrasound. 2005 Oct;33(8):375-80 [PMID: 16240428]

Word Cloud

Created with Highcharts 10.0.0flowvelocityMoyamoyaMMDdiseasemoyamoyavasculopathylesionsIncreasedpredominantconditionssyndromeMMStriggerincreasedchronicprogressivesteno-occlusivesusceptibilitymechanismsunderlyingfemaleschildrenyoungmiddle-agedadultsanteriorcirculationlesionformationdiseasesvascularmaycommonnovelperspectivearteriescomplicatedFlowalsoPathogeneticcommonlyexhibitscharacterizedcircleWillis"moyamoya"collateralvesselswellknownuniquedemographicclinicalfeaturesAlthoughdiscoverygenerevealedfactorpredominanceEastAsiansyetdeterminedsecondarilyproducesduepre-existingdespitedifferencesoriginalpathogenesissharedevelopmentThushereinconsiderblooddynamicsmiddlecerebralestablishedpredictorstrokesicklecelloftenGraves'irradiationmeningitisadditionoccurssuggestingrelationshipdetectednon-stenoticintracranialpatientspathogeneticoverviewincludingeffectprovideinsightsMechanismVasculopathyIncludingPossibleTriggerEffectVelocitymechanism

Similar Articles

Cited By