Fundamentals of burrowing in soft animals and robots.

Kelly M Dorgan, Kathryn A Daltorio
Author Information
  1. Kelly M Dorgan: Dauphin Island Sea Lab, Dauphin Island, AL, United States.
  2. Kathryn A Daltorio: Mechanical Engineering Department, Case Western Reserve University, Cleveland, OH, United States.

Abstract

Creating burrows through natural soils and sediments is a problem that evolution has solved numerous times, yet burrowing locomotion is challenging for biomimetic robots. As for every type of locomotion, forward thrust must overcome resistance forces. In burrowing, these forces will depend on the sediment mechanical properties that can vary with grain size and packing density, water saturation, organic matter and depth. The burrower typically cannot change these environmental properties, but can employ common strategies to move through a range of sediments. Here we propose four challenges for burrowers to solve. First, the burrower has to in a solid substrate, overcoming resistance by e.g., excavation, fracture, compression, or fluidization. Second, the burrower needs to . A compliant body helps fit into the possibly irregular space, but reaching the new space requires non-rigid kinematics such as longitudinal extension through peristalsis, unbending, or eversion. Third, to generate the required thrust to overcome resistance, the burrower needs to . Anchoring can be achieved through anisotropic friction or radial expansion, or both. Fourth, the burrower must to adapt the burrow shape to avoid or access different parts of the environment. Our hope is that by breaking the complexity of burrowing into these component challenges, engineers will be better able to learn from biology, since animal performance tends to exceed that of their robotic counterparts. Since body size strongly affects space creation, scaling may be a limiting factor for burrowing robotics, which are typically built at larger scales. Small robots are becoming increasingly feasible, and larger robots with non-biologically-inspired anteriors (or that traverse pre-existing tunnels) can benefit from a deeper understanding of the breadth of biological solutions in current literature and to be explored by continued research.

Keywords

References

  1. J Exp Biol. 2015 Apr;218(Pt 7):1111 [PMID: 25833136]
  2. J Exp Biol. 2014 Jun 1;217(Pt 11):1860-7 [PMID: 24871920]
  3. Front Robot AI. 2022 Oct 10;9:999392 [PMID: 36304793]
  4. Soft Robot. 2021 Aug;8(4):485-505 [PMID: 32846113]
  5. Biomimetics (Basel). 2019 Feb 06;4(1): [PMID: 31105199]
  6. J Exp Biol. 2011 Apr 15;214(Pt 8):1379-85 [PMID: 21430215]
  7. Proc Biol Sci. 2013 Feb 27;280(1757):20122948 [PMID: 23446526]
  8. Science. 2014 Oct 10;346(6206):224-9 [PMID: 25301625]
  9. J Exp Biol. 2000 Sep;203(Pt 18):2757-70 [PMID: 10952876]
  10. Angew Chem Int Ed Engl. 2018 Apr 9;57(16):4258-4273 [PMID: 29517838]
  11. Sci Robot. 2017 Jul 19;2(8): [PMID: 33157883]
  12. Sci Robot. 2020 Jan 22;5(38): [PMID: 33022592]
  13. Bioinspir Biomim. 2018 Jan 19;13(2):026003 [PMID: 29261099]
  14. J Morphol. 2014 May;275(5):548-71 [PMID: 24435812]
  15. Sci Robot. 2016 Dec 6;1(1): [PMID: 33157856]
  16. Soft Robot. 2019 Aug;6(4):560-577 [PMID: 31066633]
  17. IEEE Trans Biomed Eng. 2012 Apr;59(4):1057-67 [PMID: 22231667]
  18. Phys Rev Lett. 2001 Jul 16;87(3):035506 [PMID: 11461569]
  19. J Exp Biol. 2015 Jan 15;218(Pt 2):176-83 [PMID: 25609781]
  20. J Exp Biol. 1998 May 21;201 (Pt 12):1871-83 [PMID: 9600869]
  21. J Exp Biol. 2018 May 22;221(Pt 10): [PMID: 29636410]
  22. Invertebr Biol. 2015 Mar;134(1):61-77 [PMID: 25834379]
  23. Bioinspir Biomim. 2020 Jul 07;15(5):055003 [PMID: 32259805]
  24. Ann Rev Mar Sci. 2015;7:497-520 [PMID: 25251269]
  25. J Exp Biol. 2012 Apr 15;215(Pt 8):1247-57 [PMID: 22442361]
  26. Trends Ecol Evol. 2006 Dec;21(12):688-95 [PMID: 16901581]
  27. Sci Robot. 2021 Jun 16;6(55): [PMID: 34135117]
  28. Science. 1979 Feb 2;203(4379):458-61 [PMID: 17734146]
  29. Biol Bull. 2005 Oct;209(2):139-45 [PMID: 16260773]
  30. Front Robot AI. 2020 Nov 10;7:548266 [PMID: 33501315]
  31. Nature. 2005 Feb 3;433(7025):475 [PMID: 15690029]
  32. Soft Matter. 2022 Oct 26;18(41):7990-7997 [PMID: 36218365]
  33. J Exp Biol. 1999 Dec;202(Pt 23):3325-32 [PMID: 10562515]
  34. J Exp Biol. 2007 Dec;210(Pt 23):4198-212 [PMID: 18025018]
  35. Science. 2009 Jul 17;325(5938):314-8 [PMID: 19608917]
  36. J Exp Biol. 1999 Mar;202 (Pt 6):661-74 [PMID: 10021320]
  37. Oecologia. 1990 Jan;82(1):1-11 [PMID: 28313130]
  38. Bioinspir Biomim. 2021 Jun 07;16(4): [PMID: 33794505]
  39. Front Bioeng Biotechnol. 2014 Jan 30;2:2 [PMID: 25152878]
  40. J Exp Biol. 2010 Apr;213(Pt 8):1241-50 [PMID: 20348335]
  41. Bioinspir Biomim. 2013 Sep;8(3):035003 [PMID: 23981561]
  42. Soft Robot. 2017 Sep 1;4(3):211-223 [PMID: 29062628]
  43. J Insect Sci. 2011;11:22 [PMID: 21529154]
  44. J Exp Biol. 2010 Dec 15;213(Pt 24):4272-7 [PMID: 21113009]
  45. Biol Bull. 2014 Apr;226(2):131-45 [PMID: 24797095]
  46. R Soc Open Sci. 2021 Oct 13;8(10):210541 [PMID: 34659778]
  47. J R Soc Interface. 2020 Jan;17(162):20190521 [PMID: 31910769]
  48. J Exp Biol. 2015 May 15;218(Pt 10):1527-37 [PMID: 25827841]
  49. Phys Biol. 2015 Jun 25;12(4):046009 [PMID: 26109565]
  50. Bioinspir Biomim. 2016 Jul 01;11(4):046004 [PMID: 27367548]
  51. J Exp Biol. 2015 Sep;218(Pt 18):2970-8 [PMID: 26232418]
  52. J R Soc Interface. 2011 Sep 7;8(62):1332-45 [PMID: 21378020]
  53. J Exp Biol. 2011 Jul 1;214(Pt 13):2202-14 [PMID: 21653814]
  54. PLoS One. 2008;3(10):e3472 [PMID: 18852902]
  55. Biomimetics (Basel). 2021 Sep 30;6(4): [PMID: 34698058]
  56. Biomimetics (Basel). 2020 Jun 05;5(2): [PMID: 32517012]

Word Cloud

Created with Highcharts 10.0.0burrowingburrowerrobotscansedimentsresistancespacesoilslocomotionthrustmustovercomeforceswillpropertiessizetypicallychallengesfractureneedsbodyroboticslargersoftCreatingburrowsnaturalproblemevolutionsolvednumeroustimesyetchallengingbiomimeticeverytypeforwarddependsedimentmechanicalvarygrainpackingdensitywatersaturationorganicmatterdepthchangeenvironmentalemploycommonstrategiesmoverangeproposefourburrowerssolveFirstsolidsubstrateovercomingegexcavationcompressionfluidizationSecondcomplianthelpsfitpossiblyirregularreachingnewrequiresnon-rigidkinematicslongitudinalextensionperistalsisunbendingeversionThirdgeneraterequiredAnchoringachievedanisotropicfrictionradialexpansionFourthadaptburrowshapeavoidaccessdifferentpartsenvironmenthopebreakingcomplexitycomponentengineersbetterablelearnbiologysinceanimalperformancetendsexceedroboticcounterpartsSincestronglyaffectscreationscalingmaylimitingfactorbuiltscalesSmallbecomingincreasinglyfeasiblenon-biologically-inspiredanteriorstraversepre-existingtunnelsbenefitdeeperunderstandingbreadthbiologicalsolutionscurrentliteratureexploredcontinuedresearchFundamentalsanimalsannelidsmechanics

Similar Articles

Cited By (2)