Molecular Cloning and AlphaFold Modeling of Thyrotropin (ag-TSH) From the Amazonian Fish Pirarucu ().

Renan Passos Freire, Jorge Enrique Hernandez-Gonzalez, Eliana Rosa Lima, Miriam Fussae Suzuki, João Ezequiel de Oliveira, Lucas Simon Torai, Paolo Bartolini, Carlos Roberto Jorge Soares
Author Information
  1. Renan Passos Freire: Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), São Paulo, Brazil.
  2. Jorge Enrique Hernandez-Gonzalez: Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), São Paulo, Brazil.
  3. Eliana Rosa Lima: Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), São Paulo, Brazil.
  4. Miriam Fussae Suzuki: Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), São Paulo, Brazil.
  5. João Ezequiel de Oliveira: Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), São Paulo, Brazil.
  6. Lucas Simon Torai: Embrapa Pesca e Aquicultura, Palmas, Brazil.
  7. Paolo Bartolini: Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), São Paulo, Brazil.
  8. Carlos Roberto Jorge Soares: Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), São Paulo, Brazil.

Abstract

, known as Pirarucu in Brazil, is one of the largest freshwater fish in the world. Some individuals could reach 3 m in length and weight up to 200 kg. Due to extinction risks and its economic value, the species has been a focus for preservation and reproduction studies. Thyrotropin (TSH) is a glycoprotein hormone formed by 2 subunits α and β whose main activity is related to the synthesis of thyroid hormones (THs)-T3 and T4. In this work, we present a combination of bioinformatics tools to identify βTSH (ag-βTSH), modeling its molecular structure and express the recombinant heterodimer form in mammalian cells. Using the combination of computational biology, based on genome-related information, in silico molecular cloning and modeling led to confirm results of the ag-βTSH sequence by reverse transcriptase-polymerase chain reaction (RT-PCR) and transient expression in human embryonic kidney (HEK293F) cells. Molecular cloning of ag-βTSH retrieved 146 amino acids with a signal peptide of 21 amino acid residues and 6 disulfide bonds. The sequence has a similarity to 39 fish species, ranging between 43.1% and 81.6%, whose domains are extremely conserved, such as cystine knot motif and N-glycosylation site. The thyrotropin (ag-TSH) model, solved by AlphaFold, was used in molecular dynamics simulations with receptor, providing similar values of free energy ΔG and ΔG in comparison with model. The recombinant expression in HEK293F cells reached a yield of 25 mg/L, characterized via chromatographic and physical-chemical techniques. This work shows that other proteins could be studied in a similar way, using the combination of these techniques, recovering more information from its genome and improving the reproduction and preservation of this prehistoric fish.

Keywords

References

  1. PLoS One. 2017 Aug 28;12(8):e0183545 [PMID: 28846736]
  2. Nat Rev Endocrinol. 2019 Aug;15(8):479-488 [PMID: 31160732]
  3. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  4. Biol Reprod. 2007 Apr;76(4):692-700 [PMID: 17192515]
  5. Genome Res. 2000 Jul;10(7):1001-10 [PMID: 10899149]
  6. Nat Biotechnol. 2022 Jul;40(7):1023-1025 [PMID: 34980915]
  7. Front Mol Biosci. 2015 Oct 13;2:56 [PMID: 26528483]
  8. Fish Physiol Biochem. 2013 Jun;39(3):683-93 [PMID: 23073850]
  9. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  10. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  11. Mol Biol Evol. 2001 May;18(5):691-9 [PMID: 11319253]
  12. Annu Rev Biophys Biomol Struct. 1995;24:269-91 [PMID: 7663117]
  13. Genome Biol Evol. 2018 Sep 1;10(9):2366-2379 [PMID: 29982381]
  14. Mol Biol Evol. 2021 Jun 25;38(7):3022-3027 [PMID: 33892491]
  15. Gen Comp Endocrinol. 2012 Jan 1;175(1):19-26 [PMID: 22100124]
  16. Physiol Rev. 2002 Apr;82(2):473-502 [PMID: 11917095]
  17. Biotechnol Appl Biochem. 2002 Feb;35(1):19-26 [PMID: 11834126]
  18. Appl Biochem Biotechnol. 2013 Dec;171(7):1658-72 [PMID: 23996121]
  19. Mol Biotechnol. 2008 Jun;39(2):159-66 [PMID: 18327556]
  20. Nat Methods. 2022 Jun;19(6):679-682 [PMID: 35637307]
  21. Int J Mol Sci. 2022 Aug 30;23(17): [PMID: 36077258]
  22. J Vis Exp. 2007;(6):253 [PMID: 18997900]
  23. Environ Manage. 2009 Feb;43(2):197-209 [PMID: 18946698]
  24. Front Endocrinol (Lausanne). 2020 Nov 06;11:596585 [PMID: 33240222]
  25. Biologicals. 2002 Sep;30(3):245-54 [PMID: 12217348]
  26. Front Endocrinol (Lausanne). 2015 Feb 26;6:26 [PMID: 25767463]
  27. J Comput Chem. 2011 May;32(7):1488-91 [PMID: 21425296]
  28. Sci Rep. 2019 Mar 28;9(1):5293 [PMID: 30923320]
  29. J Chromatogr A. 2009 Feb 27;1216(9):1431-8 [PMID: 19167716]
  30. J Biol Chem. 1997 Jun 13;272(24):15532-40 [PMID: 9182589]
  31. J Chromatogr A. 2005 Jan 7;1062(1):103-12 [PMID: 15679148]

Word Cloud

Created with Highcharts 10.0.0fishcombinationag-βTSHmolecularcellsAlphaFoldPirarucuspeciespreservationreproductionThyrotropinwhoseworkmodelingrecombinantinformationsilicocloningsequenceexpressionHEK293FMolecularaminothyrotropinag-TSHmodelsimilarΔGtechniquesknownBrazilonelargestfreshwaterworldindividualsreach3 mlengthweight200 kgDueextinctionriskseconomicvaluefocusstudiesTSHglycoproteinhormoneformed2subunitsαβmainactivityrelatedsynthesisthyroidhormonesTHs-T3T4presentbioinformaticstoolsidentifyβTSHstructureexpressheterodimerformmammalianUsingcomputationalbiologybasedgenome-relatedledconfirmresultsreversetranscriptase-polymerasechainreactionRT-PCRtransienthumanembryonickidneyretrieved146acidssignalpeptide21acidresidues6disulfidebondssimilarity39ranging431%816%domainsextremelyconservedcystineknotmotifN-glycosylationsitesolveduseddynamicssimulationsreceptorprovidingvaluesfreeenergycomparisonreachedyield25 mg/Lcharacterizedviachromatographicphysical-chemicalshowsproteinsstudiedwayusingrecoveringgenomeimprovingprehistoricCloningModelingAmazonianFishArapaimagigasprediction

Similar Articles

Cited By