Ion Transport in Glyme- and Sulfolane-Based Highly Concentrated Electrolytes.

Keisuke Shigenobu, Taku Sudoh, Junichi Murai, Kaoru Dokko, Masayoshi Watanabe, Kazuhide Ueno
Author Information
  1. Keisuke Shigenobu: Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.
  2. Taku Sudoh: Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.
  3. Junichi Murai: Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.
  4. Kaoru Dokko: Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.
  5. Masayoshi Watanabe: Institute of Advanced Sciences, Y, okohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.
  6. Kazuhide Ueno: Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan. ORCID

Abstract

Highly concentrated electrolytes (HCEs) have a similarity to ionic liquids (ILs) in high ionic nature, and indeed some of HECs are found to behave like an IL. HCEs have attracted considerable attention as prospective candidates for electrolyte materials in future lithium secondary batteries owing to their favorable properties both in the bulk and at the electrochemical interface. In this study, we highlight the effects of the solvent, counter anion, and diluent of HCEs on the Li ion coordination structure and transport properties (e. g., ionic conductivity and apparent Li ion transference number measured under anion-blocking conditions, ). Our studies on dynamic ion correlations unveiled the difference in the ion conduction mechanisms in HCEs and their intimate relevance to values. Our systematic analysis of the transport properties of HCEs also suggests the need for a compromise to simultaneously achieve high ionic conductivity and high values.

Keywords

References

  1. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243-3262.
  2. R. Santhanam, B. Rambabu, J. Power Sources 2010, 195, 5442-5451.
  3. P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2012, 11, 19-29.
  4. K. Xu, Chem. Rev. 2014, 114, 11503-11618.
  5. L. Suo, Y.-S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 2013, 4, 1481.
  6. Z. Zhang, L. Hu, H. Wu, W. Weng, M. Koh, P. C. Redfern, L. A. Curtiss, K. Amine, Energy Environ. Sci. 2013, 6, 1806-1810.
  7. M. Xu, D. Lu, A. Garsuch, B. L. Lucht, J. Electrochem. Soc. 2012, 159, A2130-A2134.
  8. A. von Cresce, K. Xu, J. Electrochem. Soc. 2011, 158, A337-A342.
  9. X. Sun, C. A. Angell, Electrochem. Commun. 2009, 11, 1418-1421.
  10. A. Abouimrane, I. Belharouak, K. Amine, Electrochem. Commun. 2009, 11, 1073-1076.
  11. V. Borgel, E. Markevich, D. Aurbach, G. Semrau, M. Schmidt, J. Power Sources 2009, 189, 331-336.
  12. A. Lewandowski, A. Świderska-Mocek, J. Power Sources 2009, 194, 601-609.
  13. G. A. Elia, J. Hassoun, W. J. Kwak, Y. K. Sun, B. Scrosati, F. Mueller, D. Bresser, S. Passerini, P. Oberhumer, N. Tsiouvaras, J. Reiter, Nano Lett. 2014, 14, 6572-6577.
  14. J.-W. Park, K. Ueno, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. C 2013, 117, 20531-20541.
  15. L. Suo, Y.-S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 2013, 4, 1481.
  16. E. S. Shin, K. Kim, S. H. Oh, W. I. Cho, Chem. Commun. 2013, 49, 2004-2006.
  17. Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, J. Am. Chem. Soc. 2014, 136, 5039-5046.
  18. H. Wang, S. Sunahiro, M. Matsui, P. Zhang, Y. Takeda, O. Yamamoto, N. Imanishi, ChemElectroChem 2015, 2, 1144-1151.
  19. R. Petibon, C. P. Aiken, L. Ma, D. Xiong, J. R. Dahn, Electrochim. Acta 2015, 154, 287-293.
  20. K. Xu, Chem. Rev. 2004, 104, 4303-4418.
  21. L. Yang, B. Ravdel, B. L. Lucht, Electrochem. Solid-State Lett. 2010, 13, A95-A97.
  22. L. de Biasi, B. Schwarz, T. Brezesinski, P. Hartmann, J. Janek, H. Ehrenberg, Adv. Mater. 2019, 31, 1900985.
  23. J. Gao, M. A. Lowe, Y. Kiya, H. D. Abruña, J. Phys. Chem. C 2011, 115, 25132-25137.
  24. S. A. Freunberger, Y. Chen, Z. Peng, J. M. Griffin, L. J. Hardwick, F. Bardé, P. Novák, P. G. Bruce, J. Am. Chem. Soc. 2011, 133, 8040-8047.
  25. M. Forsyth, H. Yoon, F. F. Chen, H. J. Zhu, D. R. MacFarlane, M. Armand, P. C. Howlett, J. Phys. Chem. C 2016, 120, 4276-4286.
  26. Q. W. Yang, Z. Q. Zhang, X. G. Sun, Y. S. Hu, H. B. Xing, S. Dai, Chem. Soc. Rev. 2018, 47, 2020-2064.
  27. A. Lewandowski, A. Świderska-Mocek, J. Power Sources 2009, 194, 601-609.
  28. G. A. Giffin, A. Moretti, S. Jeong, S. Passerini, J. Phys. Chem. C 2014, 118, 9966-9973.
  29. M. Balaish, A. Kraytsberg, Y. Ein-Eli, Phys. Chem. Chem. Phys. 2014, 16, 2801-2822.
  30. M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.-J. Hwang, H. Dai, Nature 2015, 520, 324.
  31. J. Scheers, S. Fantini, P. Johansson, J. Power Sources 2014, 255, 204-218.
  32. Y. Yamada, A. Yamada, J. Electrochem. Soc. 2015, 162, A2406-A2423.
  33. K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, J. Am. Chem. Soc. 2011, 133, 13121-13129.
  34. T. M. Pappenfus, W. A. Henderson, B. B. Owens, K. R. Mann, W. H. Smyrl, J. Electrochem. Soc. 2004, 151, A209-A215.
  35. K. Sodeyama, Y. Yamada, K. Aikawa, A. Yamada, Y. Tateyama, J. Phys. Chem. C 2014, 118, 14091-14097.
  36. J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, Nat. Commun. 2015, 6.
  37. Y. Yamada, M. Yaegashi, T. Abe, A. Yamada, Chem. Commun. 2013, 49, 11194-11196.
  38. D. W. McOwen, D. M. Seo, O. Borodin, J. Vatamanu, P. D. Boyle, W. A. Henderson, Energy Environ. Sci. 2014, 7, 416-426.
  39. Y. Yamada, C. H. Chiang, K. Sodeyama, J. Wang, Y. Tateyama, A. Yamada, ChemElectroChem 2015, 2, 1687-1694.
  40. N. Tachikawa, K. Yamauchi, E. Takashima, J.-W. Park, K. Dokko, M. Watanabe, Chem. Commun. 2011, 47, 8157-8159.
  41. M. Watanabe, K. Dokko, K. Ueno, M. L. Thomas, Bull. Chem. Soc. Jpn. 2018, 91, 1660-1682.
  42. K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, J. Electrochem. Soc. 2012, 159, A1005-A1012.
  43. K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, J. Am. Chem. Soc. 2011, 133, 13121-13129.
  44. H. Moon, R. Tatara, T. Mandai, K. Ueno, K. Yoshida, N. Tachikawa, T. Yasuda, K. Dokko, M. Watanabe, J. Phys. Chem. C 2014, 118, 20246-20256.
  45. S. Seki, N. Serizawa, K. Takei, S. Tsuzuki, Y. Umebayashi, Y. Katayama, T. Miura, K. Dokko, M. Watanabe, RSC Adv. 2016, 6, 33043-33047.
  46. K. M. Diederichsen, E. J. McShane, B. D. McCloskey, ACS Energy Lett. 2017, 2, 2563-2575.
  47. M. Doyle, T. F. Fuller, J. Newman, Electrochim. Acta 1994, 39, 2073-2081.
  48. K. Shigenobu, K. Dokko, M. Watanabe, K. Ueno, Phys. Chem. Chem. Phys. 2020, 22, 15214-15221.
  49. K. Hayamizu, Y. Aihara, S. Arai, C. G. Martinez, J. Phys. Chem. B 1999, 103, 519-524.
  50. C. Zhang, K. Ueno, A. Yamazaki, K. Yoshida, H. Moon, T. Mandai, Y. Umebayashi, K. Dokko, M. Watanabe, J. Phys. Chem. B 2014, 118, 5144-5153.
  51. A. Nakanishi, K. Ueno, D. Watanabe, Y. Ugata, Y. Matsumae, J. Liu, M. L. Thomas, K. Dokko, M. Watanabe, J. Phys. Chem. C 2019, 123, 14229-14238.
  52. K. Dokko, D. Watanabe, Y. Ugata, M. L. Thomas, S. Tsuzuki, W. Shinoda, K. Hashimoto, K. Ueno, Y. Umebayashi, M. Watanabe, J. Phys. Chem. B 2018, 122, 10736-10745.
  53. S. Tsuzuki, W. Shinoda, S. Seki, Y. Umebayashi, K. Yoshida, K. Dokko, M. Watanabe, ChemPhysChem 2013, 14, 1993-2001.
  54. W. Xu, E. I. Cooper, C. A. Angell, J. Phys. Chem. B 2003, 107, 6170-6178.
  55. M. Yoshizawa, W. Xu, C. A. Angell, J. Am. Chem. Soc. 2003, 125, 15411-15419.
  56. S.-Y. Lee, K. Ueno, C. A. Angell, J. Phys. Chem. C 2012, 116, 23915-23920.
  57. K. Ueno, R. Tatara, S. Tsuzuki, S. Saito, H. Doi, K. Yoshida, T. Mandai, M. Matsugami, Y. Umebayashi, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2015, 17, 8248-8257.
  58. Y. Okamoto, S. Tsuzuki, R. Tatara, K. Ueno, K. Dokko, M. Watanabe, J. Phys. Chem. C 2020, 124, 4459-4469.
  59. P. G. Bruce, M. T. Hardgrave, C. A. Vincent, Solid State Ionics 1992, 53-56, 1087-1094.
  60. K. Ueno, K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. B 2012, 116, 11323-11331.
  61. M. Gouverneur, J. Kopp, L. van Wüllen, M. Schönhoff, Phys. Chem. Chem. Phys. 2015, 17, 30680-30686.
  62. F. Wohde, M. Balabajew, B. Roling, J. Electrochem. Soc. 2016, 163, A714-A721.
  63. J. Fawdon, J. Ihli, F. L. Mantia, M. Pasta, Nat. Commun. 2021, 12, 4053.
  64. P. G. Bruce, J. Evans, C. A. Vincent, Solid State Ionics 1988, 28-30, 918-922.
  65. M. Watanabe, S. Nagano, K. Sanui, N. Ogata, Solid State Ionics 1988, 28-30, 911-917.
  66. M. D. Galluzzo, J. A. Maslyn, D. B. Shah, N. P. Balsara, J. Chem. Phys. 2019, 151, 020901.
  67. F. Sälzer, L. Pateras Pescara, F. Franke, C. Müller, J. Winkler, M. Schwalm, B. Roling, Batteries & Supercaps 2020, 3, 117-125.
  68. Y. Ugata, Y. Chen, S. Sasagawa, K. Ueno, M. Watanabe, H. Mita, J. Shimura, M. Nagamine, K. Dokko, J. Phys. Chem. C 2022, 126, 10024-10034.
  69. L. A. Woolf, K. R. Harris, J. Chem. Soc. Faraday Trans. 1 1978, 74, 933-947.
  70. I. Villaluenga, D. M. Pesko, K. Timachova, Z. Feng, J. Newman, V. Srinivasan, N. P. Balsara, J. Electrochem. Soc. 2018, 165, A2766-A2773.
  71. K. Shigenobu, M. Shibata, K. Dokko, M. Watanabe, K. Fujii, K. Ueno, Phys. Chem. Chem. Phys. 2021, 23, 2622-2629.
  72. H. K. Kashyap, H. V. R. Annapureddy, F. O. Raineri, C. J. Margulis, J. Phys. Chem. B 2011, 115, 13212-13221.
  73. W. A. Henderson, J. Phys. Chem. B 2006, 110, 13177-13183.
  74. T. Mandai, K. Yoshida, K. Ueno, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2014, 16, 8761-8772.
  75. W. Shinoda, Y. Hatanaka, M. Hirakawa, S. Okazaki, S. Tsuzuki, K. Ueno, M. Watanabe, J. Chem. Phys. 2018, 148, 193809.
  76. D. Dong, F. Sälzer, B. Roling, D. Bedrov, Phys. Chem. Chem. Phys. 2018, 20, 29174-29183.
  77. K. Ueno, J. Murai, K. Ikeda, S. Tsuzuki, M. Tsuchiya, R. Tatara, T. Mandai, Y. Umebayashi, K. Dokko, M. Watanabe, J. Phys. Chem. C 2016, 120, 15792-15802.
  78. K. Dokko, N. Tachikawa, K. Yamauchi, M. Tsuchiya, A. Yamazaki, E. Takashima, J.-W. Park, K. Ueno, S. Seki, N. Serizawa, J. Electrochem. Soc. 2013, 160, A1304.
  79. S. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J. G. Zhang, Adv. Mater. 2018, 30, 1706102.
  80. X. Ren, S. Chen, H. Lee, D. Mei, M. H. Engelhard, S. D. Burton, W. Zhao, J. Zheng, Q. Li, M. Ding, Chem 2018, 4, 1877-1892.
  81. S. Saito, H. Watanabe, K. Ueno, T. Mandai, S. Seki, S. Tsuzuki, Y. Kameda, K. Dokko, M. Watanabe, Y. Umebayashi, J. Phys. Chem. B 2016, 120, 3378-3387.
  82. T. Sudoh, K. Shigenobu, K. Dokko, M. Watanabe, K. Ueno, Phys. Chem. Chem. Phys. 2022, 24, 14269-14276.

Grants

  1. 22J11851/JSPS KAKENHI
  2. 20H02837/JSPS KAKENHI
  3. 22K19082/JSPS KAKENHI
  4. 19H05812/JSPS KAKENHI
  5. 22H00340/JSPS KAKENHI
  6. /Japan Society for the Promotion of Science (JSPS)
  7. JPMJAL1301/JST ALCA-SPRING
  8. JPNP20004/JST ALCA-SPRING
  9. /New Energy and Industrial Technology Development Organization (NEDO)

Word Cloud

Created with Highcharts 10.0.0HCEsionicionhighpropertiesconductivityHighlyliquidsLitransportvaluesIonconcentratedelectrolytessimilarityILsnatureindeedHECsfoundbehavelikeILattractedconsiderableattentionprospectivecandidateselectrolytematerialsfuturelithiumsecondarybatteriesowingfavorablebulkelectrochemicalinterfacestudyhighlighteffectssolventcounteraniondiluentcoordinationstructuree gapparenttransferencenumbermeasuredanion-blockingconditionsstudiesdynamiccorrelationsunveileddifferenceconductionmechanismsintimaterelevancesystematicanalysisalsosuggestsneedcompromisesimultaneouslyachieveTransportGlyme-Sulfolane-BasedConcentratedElectrolytesElectrolytecorrelationIonicSelf-diffusioncoefficientsSolvate

Similar Articles

Cited By