Consonance Perception in Congenital Amusia: Behavioral and Brain Responses to Harmonicity and Beating Cues.

Jackson E Graves, Agathe Pralus, Lesly Fornoni, Andrew J Oxenham, Barbara Tillmann, Anne Caclin
Author Information
  1. Jackson E Graves: Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France. ORCID
  2. Agathe Pralus: Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France.
  3. Lesly Fornoni: Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France.
  4. Andrew J Oxenham: University of Minnesota, Minneapolis.
  5. Barbara Tillmann: Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France.
  6. Anne Caclin: Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, F-69500, Bron, France.

Abstract

Congenital amusia is a neurodevelopmental disorder characterized by difficulties in the perception and production of music, including the perception of consonance and dissonance, or the judgment of certain combinations of pitches as more pleasant than others. Two perceptual cues for dissonance are inharmonicity (the lack of a common fundamental frequency between components) and beating (amplitude fluctuations produced by close, interacting frequency components). amusic individuals have previously been reported to be insensitive to inharmonicity, but to exhibit normal sensitivity to beats. In the present study, we measured adaptive discrimination thresholds in amusic participants and found elevated thresholds for both cues. We recorded EEG and measured the MMN in evoked potentials to consonance and dissonance deviants in an oddball paradigm. The amplitude of the MMN response was similar overall for amusic and control participants; however, in controls, there was a tendency toward larger MMNs for inharmonicity than for beating cues, whereas the opposite tendency was observed for the amusic participants. These findings suggest that initial encoding of consonance cues may be intact in amusia despite impaired behavioral performance, but that the relative weight of nonspectral (beating) cues may be increased for amusic individuals.

References

  1. Hum Brain Mapp. 2019 Feb 15;40(3):855-867 [PMID: 30381866]
  2. J Acoust Soc Am. 2000 Aug;108(2):723-34 [PMID: 10955639]
  3. Sci Rep. 2019 Jan 31;9(1):1070 [PMID: 30705379]
  4. Hear Res. 2014 Apr;310:60-8 [PMID: 24524865]
  5. Acta Psychol (Amst). 1978 Jul;42(4):313-29 [PMID: 685709]
  6. Biol Psychol. 2004 Nov;67(3):319-30 [PMID: 15294389]
  7. J Cogn Neurosci. 2011 Oct;23(10):3095-104 [PMID: 21265601]
  8. Psychophysiology. 1993 Sep;30(5):518-24 [PMID: 8416078]
  9. Neuropsychologia. 2015 Nov;78:207-20 [PMID: 26455803]
  10. Eur J Hum Genet. 2017 May;25(5):625-630 [PMID: 28224991]
  11. Exp Brain Res. 2003 Jun;150(4):506-14 [PMID: 12700880]
  12. Neuropsychologia. 2017 May;99:213-224 [PMID: 28315696]
  13. Brain Cogn. 2009 Dec;71(3):259-64 [PMID: 19762140]
  14. Front Neurosci. 2019 Oct 30;13:1165 [PMID: 31736698]
  15. Brain. 2006 Oct;129(Pt 10):2562-70 [PMID: 16931534]
  16. Brain Cogn. 2019 Nov;136:103614 [PMID: 31546175]
  17. Ann Hum Genet. 1980 May;43(4):369-82 [PMID: 7396411]
  18. J Neurosci. 2016 Mar 9;36(10):2986-94 [PMID: 26961952]
  19. Handb Clin Neurol. 2015;129:589-605 [PMID: 25726292]
  20. Philos Trans R Soc Lond B Biol Sci. 2015 May 19;370(1668): [PMID: 25823866]
  21. Psychol Rev. 1988 Jan;95(1):15-48 [PMID: 3353475]
  22. J Gen Psychol. 1968 Jul;79(1st Half):129-42 [PMID: 5672277]
  23. Neuropsychologia. 2013 Aug;51(9):1749-62 [PMID: 23707539]
  24. Neuropsychologia. 2019 Nov;134:107234 [PMID: 31647961]
  25. Trends Cogn Sci. 2016 Nov;20(11):857-867 [PMID: 27692992]
  26. J Acoust Soc Am. 1971 Feb;49(2):Suppl 2:467+ [PMID: 5541744]
  27. J Exp Psychol Hum Percept Perform. 2001 Oct;27(5):1072-89 [PMID: 11642696]
  28. Cereb Cortex. 2003 Jul;13(7):765-72 [PMID: 12816892]
  29. J Acoust Soc Am. 1974 May;55(5):1061-9 [PMID: 4833699]
  30. Neurosci Lett. 2000 Aug 18;290(1):66-70 [PMID: 10925176]
  31. Neuropsychologia. 2018 Aug;117:188-198 [PMID: 29885961]
  32. Sci Rep. 2020 May 26;10(1):8693 [PMID: 32457382]
  33. Ann N Y Acad Sci. 2003 Nov;999:58-75 [PMID: 14681118]
  34. Eur J Neurosci. 2022 Sep;56(5):4583-4599 [PMID: 35833941]
  35. Percept Psychophys. 1994 Oct;56(4):472-8 [PMID: 7984402]
  36. Brain Cogn. 2013 Apr;81(3):337-44 [PMID: 23434917]
  37. Brain Res. 2016 Jun 1;1640(Pt B):251-63 [PMID: 26505915]
  38. Nat Neurosci. 1999 Jan;2(1):79-87 [PMID: 10195184]
  39. J Neurosci. 2007 Nov 21;27(47):13028-32 [PMID: 18032676]
  40. J Neurophysiol. 2016 Jul 1;116(1):88-97 [PMID: 27009161]
  41. Percept Psychophys. 2000 Feb;62(2):233-52 [PMID: 10723205]
  42. Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19858-63 [PMID: 23150582]
  43. Front Psychol. 2012 Jun 26;3:180 [PMID: 22740836]
  44. J Cogn Neurosci. 2009 Nov;21(11):2230-44 [PMID: 18855547]
  45. J Exp Psychol Hum Percept Perform. 2014 Jun;40(3):908-14 [PMID: 24364709]
  46. Brain. 2009 May;132(Pt 5):1277-86 [PMID: 19336462]
  47. J Acoust Soc Am. 2008 Oct;124(4):2320-9 [PMID: 19062870]
  48. J Neurosci Methods. 2007 Aug 15;164(1):177-90 [PMID: 17517438]
  49. PLoS One. 2011;6(9):e25607 [PMID: 21980501]
  50. Neuroimage. 2004 Jun;22(2):755-66 [PMID: 15193604]
  51. Cereb Cortex. 2011 Feb;21(2):292-9 [PMID: 20494966]
  52. Ann N Y Acad Sci. 2009 Jul;1169:191-4 [PMID: 19673779]
  53. Brain Cogn. 2006 Oct;62(1):24-9 [PMID: 16684584]
  54. Psychol Sci. 2004 May;15(5):356-60 [PMID: 15102148]
  55. Brain. 2002 Feb;125(Pt 2):238-51 [PMID: 11844725]
  56. Brain. 2013 May;136(Pt 5):1639-61 [PMID: 23616587]
  57. Behav Res Methods Instrum Comput. 1999 Feb;31(1):137-49 [PMID: 10495845]
  58. Clin Neurophysiol. 2007 Dec;118(12):2544-90 [PMID: 17931964]
  59. Front Hum Neurosci. 2015 Feb 04;9:20 [PMID: 25698955]
  60. J Acoust Soc Am. 1965 Oct;38(4):548-60 [PMID: 5831012]
  61. Nature. 2016 Jul 28;535(7613):547-50 [PMID: 27409816]
  62. Neuropsychologia. 2021 Jul 30;158:107911 [PMID: 34102187]
  63. Neuropsychologia. 2015 Jan;66:293-301 [PMID: 25433224]
  64. Curr Biol. 2010 Jun 8;20(11):1035-41 [PMID: 20493704]
  65. J Exp Psychol Hum Percept Perform. 2003 Jun;29(3):713-25 [PMID: 12848335]
  66. Neuropsychologia. 2012 Feb;50(3):367-78 [PMID: 22201556]
  67. J Neurosci Methods. 2004 Mar 15;134(1):9-21 [PMID: 15102499]

Grants

  1. R01 DC005216/NIDCD NIH HHS
  2. R01 DC005216/NIH HHS

MeSH Term

Humans
Cues
Acoustic Stimulation
Brain
Music
Perception
Pitch Perception

Word Cloud

Created with Highcharts 10.0.0cuesamusicconsonancedissonanceinharmonicitybeatingparticipantsCongenitalamusiaperceptionfrequencycomponentsamplitudeindividualsmeasuredthresholdsMMNtendencymayneurodevelopmentaldisordercharacterizeddifficultiesproductionmusicincludingjudgmentcertaincombinationspitchespleasantothersTwoperceptuallackcommonfundamentalfluctuationsproducedcloseinteractingAmusicpreviouslyreportedinsensitiveexhibitnormalsensitivitybeatspresentstudyadaptivediscriminationfoundelevatedrecordedEEGevokedpotentialsdeviantsoddballparadigmresponsesimilaroverallcontrolhowevercontrolstowardlargerMMNswhereasoppositeobservedfindingssuggestinitialencodingintactdespiteimpairedbehavioralperformancerelativeweightnonspectralincreasedConsonancePerceptionAmusia:BehavioralBrainResponsesHarmonicityBeatingCues

Similar Articles

Cited By (1)