Multivariate functional mixed model with MRI data: An application to Alzheimer's disease.

Haotian Zou, Luo Xiao, Donglin Zeng, Sheng Luo, Alzheimer's Disease Neuroimaging Initiative
Author Information
  1. Haotian Zou: Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina. ORCID
  2. Luo Xiao: Department of Statistics, North Carolina State University, Raleigh, North Carolina. ORCID
  3. Donglin Zeng: Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina.
  4. Sheng Luo: Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina. ORCID
  5. : Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina.

Abstract

Alzheimer's Disease (AD) is the leading cause of dementia and impairment in various domains. Recent AD studies, (ie, Alzheimer's Disease Neuroimaging Initiative (ADNI) study), collect multimodal data, including longitudinal neurological assessments and magnetic resonance imaging (MRI) data, to better study the disease progression. Adopting early interventions is essential to slow AD progression for subjects with mild cognitive impairment (MCI). It is of particular interest to develop an AD predictive model that leverages multimodal data and provides accurate personalized predictions. In this article, we propose a multivariate functional mixed model with MRI data (MFMM-MRI) that simultaneously models longitudinal neurological assessments, baseline MRI data, and the survival outcome (ie, dementia onset) for subjects with MCI at baseline. Two functional forms (the random-effects model and instantaneous model) linking the longitudinal and survival process are investigated. We use Markov Chain Monte Carlo (MCMC) method based on No-U-Turn Sampling (NUTS) algorithm to obtain posterior samples. We develop a dynamic prediction framework that provides accurate personalized predictions of longitudinal trajectories and survival probability. We apply MFMM-MRI to the ADNI study and identify significant associations among longitudinal outcomes, MRI data, and the risk of dementia onset. The instantaneous model with voxels from the whole brain has the best prediction performance among all candidate models. The simulation study supports the validity of the estimation and dynamic prediction method.

Keywords

References

  1. Continuum (Minneap Minn). 2016 Apr;22(2 Dementia):404-18 [PMID: 27042901]
  2. J Neurosci. 2009 Aug 5;29(31):9661-4 [PMID: 19657018]
  3. Neuroimage. 2000 Jun;11(6 Pt 1):805-21 [PMID: 10860804]
  4. Nat Rev Dis Primers. 2021 May 13;7(1):33 [PMID: 33986301]
  5. Biostatistics. 2018 Jan 1;19(1):71-86 [PMID: 28541380]
  6. Alzheimers Dement. 2015 Jul;11(7):792-814 [PMID: 26194313]
  7. Neuroimage. 2011 Oct 1;58(3):772-84 [PMID: 21798354]
  8. Biometrics. 2011 Sep;67(3):819-29 [PMID: 21306352]
  9. Int J Biostat. 2018 Jan 31;14(1): [PMID: 29389664]
  10. Ann Appl Stat. 2009 Sep 1;3(3):1163-1182 [PMID: 20802852]
  11. Stat Methods Med Res. 2017 Aug;26(4):1684-1699 [PMID: 26037528]
  12. Stat Methods Med Res. 2018 Aug;27(8):2264-2278 [PMID: 27895266]
  13. J Alzheimers Dis. 2017;58(2):361-371 [PMID: 28436391]
  14. Sci Rep. 2017 Jan 12;7:39880 [PMID: 28079104]
  15. Alzheimers Res Ther. 2019 Aug 17;11(1):72 [PMID: 31421683]
  16. Stat Med. 2011 May 30;30(12):1366-80 [PMID: 21337596]
  17. Alzheimers Dement. 2011 May;7(3):270-9 [PMID: 21514249]
  18. Alzheimer Dis Assoc Disord. 2018 Oct-Dec;32(4):351-358 [PMID: 30376508]
  19. J R Stat Soc Ser C Appl Stat. 2021 Jun;70(3):691-713 [PMID: 34690375]
  20. Brain Imaging Behav. 2021 Feb;15(1):49-59 [PMID: 31898091]
  21. Br J Psychiatry. 1982 Jun;140:566-72 [PMID: 7104545]
  22. Nat Rev Neurol. 2013 Feb;9(2):106-18 [PMID: 23296339]
  23. PLoS One. 2013 Jul 04;8(7):e68910 [PMID: 23861951]
  24. PLoS One. 2019 Oct 4;14(10):e0222446 [PMID: 31584953]
  25. Alzheimers Dement. 2015 Jun;11(6):e1-120 [PMID: 26073027]
  26. Biometrics. 2022 Jun;78(2):435-447 [PMID: 33501651]
  27. Stat Med. 2016 Nov 20;35(26):4813-4823 [PMID: 27383428]
  28. Stat Methods Med Res. 2016 Dec;25(6):2972-2991 [PMID: 24847900]
  29. Stat Methods Med Res. 2019 Feb;28(2):327-342 [PMID: 28750578]
  30. Ann Appl Stat. 2009 Mar 1;3(1):458-488 [PMID: 20221415]
  31. Am J Psychiatry. 1984 Nov;141(11):1356-64 [PMID: 6496779]
  32. Ann Appl Stat. 2013 Mar 1;7(1):523-542 [PMID: 23745156]
  33. BMC Med Res Methodol. 2018 Nov 16;18(1):138 [PMID: 30445915]
  34. Biometrics. 2002 Mar;58(1):121-8 [PMID: 11890306]
  35. J Nonparametr Stat. 2016;28(4):813-838 [PMID: 28955155]
  36. Stat Med. 1999 Sep 15-30;18(17-18):2529-45 [PMID: 10474158]
  37. J Am Geriatr Soc. 1992 Sep;40(9):922-35 [PMID: 1512391]
  38. Stat Med. 2021 Dec 30;40(30):6855-6872 [PMID: 34649301]
  39. Alzheimers Dement. 2021 Dec;17(12):1966-1975 [PMID: 34043283]
  40. Stat (Int Stat Inst). 2020;9(1): [PMID: 34262756]

Grants

  1. R01 AG064803/NIA NIH HHS
  2. P30 AG072958/NIA NIH HHS
  3. P30 AG028716/NIA NIH HHS

MeSH Term

Humans
Alzheimer Disease
Magnetic Resonance Imaging
Neuroimaging
Brain
Disease Progression
Cognitive Dysfunction

Word Cloud

Created with Highcharts 10.0.0datamodellongitudinalMRIAlzheimer'sADstudyfunctionalpredictiondementiadiseasesurvivalmethoddynamicDiseaseimpairmentieADNImultimodalneurologicalassessmentsmagneticresonanceimagingprogressionsubjectsMCIdevelopprovidesaccuratepersonalizedpredictionsmixedMFMM-MRImodelsbaselineonsetinstantaneousamongleadingcausevariousdomainsRecentstudiesNeuroimagingInitiativecollectincludingbetterAdoptingearlyinterventionsessentialslowmildcognitiveparticularinterestpredictiveleveragesarticleproposemultivariatesimultaneouslyoutcomeTwoformsrandom-effectslinkingprocessinvestigateduseMarkovChainMonteCarloMCMCbasedNo-U-TurnSamplingNUTSalgorithmobtainposteriorsamplesframeworktrajectoriesprobabilityapplyidentifysignificantassociationsoutcomesriskvoxelswholebrainbestperformancecandidatesimulationsupportsvalidityestimationMultivariatedata:An applicationBayesianregression

Similar Articles

Cited By (1)