Genomic Strategies in Mitochondrial Diagnostics.

Dasha Deen, Charlotte L Alston, Gavin Hudson, Robert W Taylor, Angela Pyle
Author Information
  1. Dasha Deen: Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
  2. Charlotte L Alston: Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
  3. Gavin Hudson: Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
  4. Robert W Taylor: Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
  5. Angela Pyle: Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK. angela.pyle@newcastle.ac.uk.

Abstract

Pathogenic variants in both mitochondrial and nuclear genes contribute to the clinical and genetic heterogeneity of mitochondrial diseases. There are now pathogenic variants in over 300 nuclear genes linked to human mitochondrial diseases. Nonetheless, diagnosing mitochondrial disease with a genetic outcome remains challenging. However, there are now many strategies that help us to pinpoint causative variants in patients with mitochondrial disease. This chapter describes some of the approaches and recent advancements in gene/variant prioritization using whole-exome sequencing (WES).

Keywords

References

  1. Stenton SL, Prokisch H (2018) Advancing genomic approaches to the molecular diagnosis of mitochondrial disease. Essays Biochem 62(3):399–408 [DOI: 10.1042/EBC20170110]
  2. Stenton SL, Shimura M, Piekutowska-Abramczuk D, Freisinger P, Distelmaier F, Mayr JA et al (2021) Diagnosing pediatric mitochondrial disease: lessons from 2,000 exomes. medRxiv
  3. Alston CL, Stenton SL, Hudson G, Prokisch H, Taylor RW (2021) The genetics of mitochondrial disease: dissecting mitochondrial pathology using multi-omic pipelines. J Pathol 254(4):430–442 [DOI: 10.1002/path.5641]
  4. Yépez VA, Gusic M, Kopajtich R, Mertes C, Smith NH, Alston CL et al (2021) Clinical implementation of RNA sequencing for Mendelian disease diagnostics. medRxiv
  5. Kopajtich R, Smirnov D, Stenton SL, Loipfinger S, Meng C, Scheller IF et al (2021) Integration of proteomics with genomics and transcriptomics increases the diagnostic rate of Mendelian disorders. medRxiv
  6. Thompson K, Collier JJ, Glasgow RIC, Robertson FM, Pyle A, Blakely EL et al (2020) Recent advances in understanding the molecular genetic basis of mitochondrial disease. J Inherit Metab Dis 43(1):36–50 [DOI: 10.1002/jimd.12104]
  7. Schwarze K, Buchanan J, Taylor JC, Wordsworth S (2018) Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med 20(10):1122–1130 [DOI: 10.1038/gim.2017.247]
  8. Fang H, Wu Y, Narzisi G, O'Rawe JA, Barron LT, Rosenbaum J et al (2014) Reducing INDEL calling errors in whole genome and exome sequencing data. Genome Med 6(10):89 [DOI: 10.1186/s13073-014-0089-z]
  9. Holt IJ, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331(6158):717–719 [DOI: 10.1038/331717a0]
  10. Grady JP, Pickett SJ, Ng YS, Alston CL, Blakely EL, Hardy SA et al (2018) mtDNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease. EMBO Mol Med 10(6)
  11. Hamzeh AR, Andrews TD, Field MA (2021) Detecting causal variants in Mendelian disorders using whole-genome sequencing. Methods Mol Biol 2243:1–25 [DOI: 10.1007/978-1-0716-1103-6_1]
  12. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA et al (2017) Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv
  13. Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF, Consortium WGS et al (2014) Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet 46(8):912–918 [DOI: 10.1038/ng.3036]
  14. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M et al (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46(W1):W537–WW44 [DOI: 10.1093/nar/gky379]
  15. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164 [DOI: 10.1093/nar/gkq603]
  16. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A et al (2016) The ensembl variant effect predictor. Genome Biol 17(1):122 [DOI: 10.1186/s13059-016-0974-4]
  17. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92 [DOI: 10.4161/fly.19695]
  18. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581(7809):434–443 [DOI: 10.1038/s41586-020-2308-7]
  19. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M (2019) CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47(D1):D886–DD94 [DOI: 10.1093/nar/gky1016]
  20. Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ et al (2021) MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res 49(D1):D1541–D15D7 [DOI: 10.1093/nar/gkaa1011]
  21. Ellard S, Baple E, Callaway A, Berry I, Forrester N, Turnbull C et al (2020) ACGS best practice guidelines for variant classification in rare disease 2020. Association for Clinical Genomic Science
  22. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424 [DOI: 10.1038/gim.2015.30]
  23. Van Bergen NJ, Guo Y, Rankin J, Paczia N, Becker-Kettern J, Kremer LS et al (2019) NAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses. Brain 142(1):50–58 [DOI: 10.1093/brain/awy310]
  24. Wingett SW, Andrews S (2018) FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res 7:1338 [DOI: 10.12688/f1000research.15931.1]
  25. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079 [DOI: 10.1093/bioinformatics/btp352]
  26. Zhang F, Flickinger M, Taliun SAG, In PPGC, Abecasis GR, Scott LJ et al (2020) Ancestry-agnostic estimation of DNA sample contamination from sequence reads. Genome Res 30(2):185–194 [DOI: 10.1101/gr.246934.118]
  27. Tan A, Abecasis GR, Kang HM (2015) Unified representation of genetic variants. Bioinformatics 31(13):2202–2204 [DOI: 10.1093/bioinformatics/btv112]
  28. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC (2016) SIFT missense predictions for genomes. Nat Protoc 11(1):1–9 [DOI: 10.1038/nprot.2015.123]
  29. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249 [DOI: 10.1038/nmeth0410-248]
  30. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S et al (2016) REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 99(4):877–885 [DOI: 10.1016/j.ajhg.2016.08.016]
  31. Tian Y, Pesaran T, Chamberlin A, Fenwick RB, Li S, Gau CL et al (2019) REVEL and BayesDel outperform other in silico meta-predictors for clinical variant classification. Sci Rep 9(1):12752 [DOI: 10.1038/s41598-019-49224-8]
  32. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291 [DOI: 10.1038/nature19057]
  33. Fadista J, Oskolkov N, Hansson O, Groop L (2017) LoFtool: a gene intolerance score based on loss-of-function variants in 60 706 individuals. Bioinformatics 33(4):471–474 [DOI: 10.1093/bioinformatics/btv602]
  34. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S et al (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 54:1 30 1–1 3
  35. Amberger JS, Bocchini CA, Scott AF, Hamosh A (2019) OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res 47(D1):D1038–D1D43 [DOI: 10.1093/nar/gky1151]
  36. Chunn LM, Nefcy DC, Scouten RW, Tarpey RP, Chauhan G, Lim MS et al (2020) Mastermind: a comprehensive genomic association search engine for empirical evidence curation and genetic variant interpretation. Front Genet 11:577152 [DOI: 10.3389/fgene.2020.577152]
  37. Pinero J, Ramirez-Anguita JM, Sauch-Pitarch J, Ronzano F, Centeno E, Sanz F et al (2020) The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 48(D1):D845–DD55 [PMID: 31680165]
  38. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S et al (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44(D1):D862–D868 [DOI: 10.1093/nar/gkv1222]
  39. Harrison SM, Riggs ER, Maglott DR, Lee JM, Azzariti DR, Niehaus A et al (2016) Using ClinVar as a resource to support variant interpretation. Curr Protoc Hum Genet 89:8 16 1–8 8 23 [PMID: 27037489]
  40. Pei S, Liu T, Ren X, Li W, Chen C, Xie Z (2021) Benchmarking variant callers in next-generation and third-generation sequencing analysis. Brief Bioinform 22(3):bbaa148 [DOI: 10.1093/bib/bbaa148]
  41. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120 [DOI: 10.1093/bioinformatics/btu170]
  42. Zeng Z, Bromberg Y (2019) Predicting functional effects of synonymous variants: a systematic review and perspectives. Front Genet 10:914 [DOI: 10.3389/fgene.2019.00914]
  43. Pyle A, Nightingale HJ, Griffin H, Abicht A, Kirschner J, Baric I et al (2015) Respiratory chain deficiency in nonmitochondrial disease. Neurol Genet 1(1):e6 [DOI: 10.1212/NXG.0000000000000006]
  44. Kemp JP, Smith PM, Pyle A, Neeve VC, Tuppen HA, Schara U et al (2011) Nuclear factors involved in mitochondrial translation cause a subgroup of combined respiratory chain deficiency. Brain 134(Pt 1):183–195 [DOI: 10.1093/brain/awq320]
  45. Lieber DS, Calvo SE, Shanahan K, Slate NG, Liu S, Hershman SG et al (2013) Targeted exome sequencing of suspected mitochondrial disorders. Neurology 80(19):1762–1770 [DOI: 10.1212/WNL.0b013e3182918c40]
  46. Taylor RW, Pyle A, Griffin H, Blakely EL, Duff J, He L et al (2014) Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 312(1):68–77 [DOI: 10.1001/jama.2014.7184]
  47. Hengel H, Hannan SB, Dyack S, MacKay SB, Schatz U, Fleger M et al (2021) Bi-allelic loss-of-function variants in BCAS3 cause a syndromic neurodevelopmental disorder. Am J Hum Genet 108(6):1069–1082 [DOI: 10.1016/j.ajhg.2021.04.024]

MeSH Term

Humans
Exome
Genomics
Mitochondrial Diseases
Exome Sequencing
Cell Nucleus

Word Cloud

Created with Highcharts 10.0.0mitochondrialvariantsdiseasenucleargenesgeneticdiseasesnowsequencingMitochondrialVariantPathogeniccontributeclinicalheterogeneitypathogenic300linkedhumanNonethelessdiagnosingoutcomeremainschallengingHowevermanystrategieshelpuspinpointcausativepatientschapterdescribesapproachesrecentadvancementsgene/variantprioritizationusingwhole-exomeWESGenomicStrategiesDiagnosticsClinicalreportingGeneticdiagnosisGenomicsannotationdetectionWhole-exome

Similar Articles

Cited By