Resonant learning in scale-free networks.

Samuel Goldman, Maximino Aldana, Philippe Cluzel
Author Information
  1. Samuel Goldman: Department of Molecular and Cellular Biology, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America. ORCID
  2. Maximino Aldana: Instituto de Ciencias Fisicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
  3. Philippe Cluzel: Department of Molecular and Cellular Biology, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America. ORCID

Abstract

Large networks of interconnected components, such as genes or machines, can coordinate complex behavioral dynamics. One outstanding question has been to identify the design principles that allow such networks to learn new behaviors. Here, we use Boolean networks as prototypes to demonstrate how periodic activation of network hubs provides a network-level advantage in evolutionary learning. Surprisingly, we find that a network can simultaneously learn distinct target functions upon distinct hub oscillations. We term this emergent property resonant learning, as the new selected dynamical behaviors depend on the choice of the period of the hub oscillations. Furthermore, this procedure accelerates the learning of new behaviors by an order of magnitude faster than without oscillations. While it is well-established that modular network architecture can be selected through evolutionary learning to produce different network behaviors, forced hub oscillations emerge as an alternative evolutionary learning strategy for which network modularity is not necessarily required.

References

  1. Source Code Biol Med. 2008 Nov 14;3:16 [PMID: 19014577]
  2. Science. 2004 Sep 10;305(5690):1622-5 [PMID: 15308767]
  3. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10746-51 [PMID: 10485897]
  4. Entropy (Basel). 2018 Dec 11;20(12): [PMID: 33266678]
  5. Lab Chip. 2012 Apr 21;12(8):1487-94 [PMID: 22395180]
  6. Sci Rep. 2017 Jan 11;7:40198 [PMID: 28074900]
  7. Phys Biol. 2012 Oct;9(5):055001 [PMID: 23011283]
  8. PLoS One. 2009 Sep 29;4(9):e7163 [PMID: 19787057]
  9. Nucleic Acids Res. 2019 Jan 8;47(D1):D212-D220 [PMID: 30395280]
  10. Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13773-8 [PMID: 16174729]
  11. J Theor Biol. 2007 Apr 7;245(3):433-48 [PMID: 17188715]
  12. Science. 2005 Sep 23;309(5743):2075-8 [PMID: 16123265]
  13. PLoS One. 2008 Feb 27;3(2):e1672 [PMID: 18301750]
  14. Comput Struct Biotechnol J. 2020 Mar 10;18:571-582 [PMID: 32257043]
  15. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 2):026115 [PMID: 22463287]
  16. J Theor Biol. 2010 Nov 7;267(1):48-61 [PMID: 20696172]
  17. Nature. 2011 May 12;473(7346):167-73 [PMID: 21562557]
  18. Phys Rev Lett. 2005 Apr 1;94(12):128701 [PMID: 15903968]
  19. Nat Commun. 2013;4:1942 [PMID: 23803966]
  20. Science. 2011 Oct 21;334(6054):366-9 [PMID: 21979936]
  21. Proc Natl Acad Sci U S A. 1989 Feb;86(3):830-4 [PMID: 2644646]
  22. Nucleic Acids Res. 2018 Jan 4;46(D1):D743-D748 [PMID: 29788229]
  23. Proc Natl Acad Sci U S A. 2021 Mar 2;118(9): [PMID: 33627405]
  24. J Cell Sci. 2005 Nov 1;118(Pt 21):4947-57 [PMID: 16254242]
  25. Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11266-11271 [PMID: 27647895]
  26. Curr Opin Genet Dev. 2010 Dec;20(6):665-9 [PMID: 20971631]
  27. Chaos. 2010 Dec;20(4):045110 [PMID: 21198122]
  28. Mol Syst Biol. 2011 May 10;7:488 [PMID: 21556066]
  29. Front Physiol. 2018 Dec 20;9:1836 [PMID: 30618841]
  30. Sci Rep. 2018 Feb 26;8(1):3594 [PMID: 29483553]
  31. J Bacteriol. 1993 Dec;175(24):7931-7 [PMID: 8253681]
  32. Nat Struct Mol Biol. 2011 Dec 18;19(1):31-9 [PMID: 22179789]
  33. Sci Adv. 2020 Feb 05;6(6):eaax0947 [PMID: 32076637]
  34. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  35. Nature. 2021 Dec;600(7888):290-294 [PMID: 34789881]
  36. Cell Syst. 2018 Feb 28;6(2):216-229.e15 [PMID: 29454936]
  37. Phys Biol. 2021 May 17;18(4): [PMID: 33477124]
  38. Genetics. 2013 Sep;195(1):9-36 [PMID: 24018767]
  39. Biosystems. 2021 Nov;209:104524 [PMID: 34453988]

MeSH Term

Learning
Biological Evolution

Word Cloud

Created with Highcharts 10.0.0learningnetworknetworksbehaviorsoscillationscannewevolutionaryhublearndistinctselectedLargeinterconnectedcomponentsgenesmachinescoordinatecomplexbehavioraldynamicsOneoutstandingquestionidentifydesignprinciplesallowuseBooleanprototypesdemonstrateperiodicactivationhubsprovidesnetwork-leveladvantageSurprisinglyfindsimultaneouslytargetfunctionsupontermemergentpropertyresonantdynamicaldependchoiceperiodFurthermoreprocedureacceleratesordermagnitudefasterwithoutwell-establishedmodulararchitectureproducedifferentforcedemergealternativestrategymodularitynecessarilyrequiredResonantscale-free

Similar Articles

Cited By

No available data.