Ionizable lipids in bio-inspired nanocarriers.

Vladimir P Zhdanov
Author Information
  1. Vladimir P Zhdanov: Section of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden. zhdanov@chalmers.se. ORCID

Abstract

In applications of bio-inspired nanoparticles (NPs), their composition is often optimised by including ionizable lipids. I use a generic statistical model to describe the charge and potential distributions in lipid nanoparticles (LNPs) containing such lipids. The LNP structure is considered to contain the biophase regions separated by narrow interphase boundaries with water. Ionizable lipids are uniformly distributed at the biophase-water boundaries. The potential is there described at the mean-filed level combining the Langmuir-Stern equation for ionizable lipids and the Poisson-Boltzmann equation for other charges in water. The latter equation is used outside a LNP as well. With physiologically reasonable parameters, the model predicts the scale of the potential in a LNP to be rather low, smaller or about [Formula: see text], and to change primarily near the LNP-solution interface or, more precisely, inside an NP near this interface because the charge of ionizable lipids becomes rapidly neutralized along the coordinate towards the center of a LNP. The extent of dissociation-mediated neutralization of ionizable lipids along this coordinate increases but only slightly. Thus, the neutralization is primarily due to the negative and positive ions related to the ionic strength in solution and located inside a LNP.

Keywords

References

  1. Curr Opin Colloid Interface Sci. 2021 Jun;53:101450 [PMID: 36568530]
  2. J Control Release. 2022 Apr;344:80-96 [PMID: 35183654]
  3. Langmuir. 2012 May 22;28(20):7679-94 [PMID: 22414296]
  4. Chem Commun (Camb). 2021 Dec 3;57(96):12880-12897 [PMID: 34816825]
  5. Phys Rev E. 2017 Oct;96(4-1):042406 [PMID: 29347496]
  6. Nat Rev Mater. 2021;6(12):1078-1094 [PMID: 34394960]
  7. Phys Rev Lett. 2021 May 28;126(21):216001 [PMID: 34114838]
  8. Science. 2018 Jun 22;360(6395):1339-1342 [PMID: 29930134]
  9. J Phys Condens Matter. 2017 Oct 25;29(42):423002 [PMID: 28898203]
  10. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3351-E3360 [PMID: 29588418]
  11. ACS Nano. 2021 Sep 28;15(9):13993-14021 [PMID: 34505766]
  12. Nano Lett. 2017 Mar 8;17(3):1326-1335 [PMID: 28273716]
  13. Phys Rev E. 2017 Dec;96(6-1):062416 [PMID: 29347452]
  14. Phys Rev E. 2022 Apr;105(4-1):044405 [PMID: 35590555]
  15. Soft Matter. 2019 Nov 28;15(44):8951-8970 [PMID: 31680131]
  16. Adv Colloid Interface Sci. 2020 Jun;280:102138 [PMID: 32387754]
  17. Nat Rev Drug Discov. 2021 Feb;20(2):101-124 [PMID: 33277608]
  18. Soft Matter. 2019 Feb 6;15(6):1269-1277 [PMID: 30462135]
  19. J Phys Chem B. 2020 May 28;124(21):4365-4371 [PMID: 32364728]
  20. Chem Rev. 2019 May 8;119(9):5607-5774 [PMID: 30859819]
  21. ACS Nano. 2022 Dec 27;16(12):20163-20173 [PMID: 36511601]

MeSH Term

Lipids
RNA, Small Interfering
Nanoparticles
Osmolar Concentration

Chemicals

Lipids
RNA, Small Interfering

Word Cloud

Created with Highcharts 10.0.0lipidsLNPequationionizablepotentialIonizablebio-inspirednanoparticlesmodelchargeboundarieswaterprimarilynearinterfaceinsidealongcoordinateneutralizationapplicationsNPscompositionoftenoptimisedincludingusegenericstatisticaldescribedistributionslipidLNPscontainingstructureconsideredcontainbiophaseregionsseparatednarrowinterphaseuniformlydistributedbiophase-waterdescribedmean-filedlevelcombiningLangmuir-SternPoisson-Boltzmannchargeslatterusedoutsidewellphysiologicallyreasonableparameterspredictsscaleratherlowsmaller[Formula:seetext]changeLNP-solutionpreciselyNPbecomesrapidlyneutralizedtowardscenterextentdissociation-mediatedincreasesslightlyThusduenegativepositiveionsrelatedionicstrengthsolutionlocatednanocarriersChargedistributionLangmuir–SternNanoparticlesPoisson–BoltzmannPotential

Similar Articles

Cited By