Real-time estimation of the epidemic reproduction number: Scoping review of the applications and challenges.

Rebecca K Nash, Pierre Nouvellet, Anne Cori
Author Information
  1. Rebecca K Nash: MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London. ORCID
  2. Pierre Nouvellet: MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London.
  3. Anne Cori: MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London.

Abstract

The time-varying reproduction number (Rt) is an important measure of transmissibility during outbreaks. Estimating whether and how rapidly an outbreak is growing (Rt > 1) or declining (Rt < 1) can inform the design, monitoring and adjustment of control measures in real-time. We use a popular R package for Rt estimation, EpiEstim, as a case study to evaluate the contexts in which Rt estimation methods have been used and identify unmet needs which would enable broader applicability of these methods in real-time. A scoping review, complemented by a small EpiEstim user survey, highlight issues with the current approaches, including the quality of input incidence data, the inability to account for geographical factors, and other methodological issues. We summarise the methods and software developed to tackle the problems identified, but conclude that significant gaps remain which should be addressed to enable easier, more robust and applicable estimation of Rt during epidemics.

References

  1. Syst Biol. 2020 Nov 1;69(6):1163-1179 [PMID: 32333789]
  2. N Engl J Med. 2015 Feb 5;372(6):584-7 [PMID: 25539446]
  3. Lancet Infect Dis. 2014 Jan;14(1):50-56 [PMID: 24239323]
  4. Front Big Data. 2020 Jul 24;3:26 [PMID: 33693399]
  5. Science. 2009 Jun 19;324(5934):1557-61 [PMID: 19433588]
  6. Rev Bras Epidemiol. 2020 Sep 30;23:e200091 [PMID: 33027433]
  7. Am J Epidemiol. 2021 Apr 6;190(4):642-651 [PMID: 33511390]
  8. PLoS Comput Biol. 2020 Dec 10;16(12):e1008409 [PMID: 33301457]
  9. BMJ Open. 2020 Nov 23;10(11):e040263 [PMID: 33234640]
  10. J R Soc Interface. 2021 Dec;18(185):20210569 [PMID: 34905965]
  11. Front Public Health. 2021 Jan 21;8:583401 [PMID: 33553088]
  12. Nature. 2005 Sep 8;437(7056):209-14 [PMID: 16079797]
  13. Spat Stat. 2022 Jun;49:100551 [PMID: 34782854]
  14. PLoS Comput Biol. 2016 Dec 8;12(12):e1005210 [PMID: 27930675]
  15. J R Soc Interface. 2019 Jan 31;16(150):20180670 [PMID: 30958162]
  16. PLoS Comput Biol. 2021 Sep 7;17(9):e1009347 [PMID: 34492011]
  17. PLoS Comput Biol. 2020 Nov 30;16(11):e1008478 [PMID: 33253158]
  18. BMC Med. 2019 Mar 12;17(1):58 [PMID: 30857521]
  19. F1000Res. 2018 May 10;7:566 [PMID: 31240097]
  20. PLoS Med. 2020 Sep 22;17(9):e1003346 [PMID: 32960881]
  21. Infect Dis Model. 2020;5:889-896 [PMID: 33163739]
  22. Stat Methods Med Res. 2021 Sep;30(9):2075-2084 [PMID: 33951962]
  23. Nat Commun. 2021 Feb 17;12(1):1090 [PMID: 33597546]
  24. Lancet Public Health. 2020 May;5(5):e279-e288 [PMID: 32311320]
  25. Int J Infect Dis. 2020 Oct;99:466-472 [PMID: 32829052]
  26. PLoS One. 2007 Aug 22;2(8):e758 [PMID: 17712406]
  27. Emerg Infect Dis. 2005 Aug;11(8):1249-56 [PMID: 16102315]
  28. Nature. 2020 Aug;584(7820):257-261 [PMID: 32512579]
  29. Proc Natl Acad Sci U S A. 2021 Dec 14;118(50): [PMID: 34876517]
  30. J Appl Stat. 2021 Jun 22;50(11-12):2518-2546 [PMID: 37554662]
  31. Trans R Soc Trop Med Hyg. 2020 Jan 6;114(1):62-71 [PMID: 31638154]
  32. Chaos Solitons Fractals. 2020 Nov;140:110167 [PMID: 32868967]
  33. BMC Med. 2021 Feb 5;19(1):40 [PMID: 33541353]
  34. Epidemics. 2019 Dec;29:100356 [PMID: 31624039]
  35. Epidemiol Health. 2020;42:e2020028 [PMID: 32512670]
  36. J Assoc Med Microbiol Infect Dis Can. 2020 Dec 31;5(4):223-234 [PMID: 36340059]
  37. Epidemiol Infect. 2020 Jun 10;148:e115 [PMID: 32517845]
  38. Sci Rep. 2019 Feb 22;9(1):2539 [PMID: 30796315]
  39. Sci Rep. 2019 Dec 16;9(1):19172 [PMID: 31844099]
  40. Philos Trans R Soc Lond B Biol Sci. 2021 Jul 19;376(1829):20200283 [PMID: 34053260]
  41. PLoS One. 2020 Aug 20;15(8):e0237901 [PMID: 32817697]
  42. PLoS One. 2020 Sep 24;15(9):e0239645 [PMID: 32970773]
  43. Elife. 2022 Aug 08;11: [PMID: 35938911]
  44. Lancet Infect Dis. 2021 Feb;21(2):193-202 [PMID: 33729915]
  45. Epidemics. 2022 Sep;40:100624 [PMID: 36075125]
  46. PLoS Comput Biol. 2020 Jul 1;16(7):e1007990 [PMID: 32609732]
  47. N Engl J Med. 2014 Oct 16;371(16):1481-95 [PMID: 25244186]
  48. Mater Today Proc. 2020 Oct 14;: [PMID: 33078097]
  49. Epidemics. 2018 Mar;22:29-35 [PMID: 28351674]
  50. Am J Epidemiol. 2022 Mar 24;191(5):812-824 [PMID: 35029649]
  51. Infect Dis Model. 2021;6:706-728 [PMID: 33824936]
  52. PLoS Pathog. 2016 Apr 08;12(4):e1005525 [PMID: 27058957]
  53. Proc Biol Sci. 2020 Aug 26;287(1933):20201173 [PMID: 32842911]
  54. Lancet. 2018 Jul 21;392(10143):213-221 [PMID: 30047375]
  55. Science. 2016 Jul 22;353(6297):353-4 [PMID: 27417493]
  56. Am J Epidemiol. 2013 Nov 1;178(9):1505-12 [PMID: 24043437]
  57. J R Soc Interface. 2022 Mar;19(188):20210429 [PMID: 35350879]

Grants

  1. MR/R015600/1/Medical Research Council

Word Cloud

Created with Highcharts 10.0.0Rtestimationmethodsreproduction1real-timeEpiEstimenablereviewissuestime-varyingnumberimportantmeasuretransmissibilityoutbreaksEstimatingwhetherrapidlyoutbreakgrowing>declining<caninformdesignmonitoringadjustmentcontrolmeasuresusepopularRpackagecasestudyevaluatecontextsusedidentifyunmetneedsbroaderapplicabilityscopingcomplementedsmallusersurveyhighlightcurrentapproachesincludingqualityinputincidencedatainabilityaccountgeographicalfactorsmethodologicalsummarisesoftwaredevelopedtackleproblemsidentifiedconcludesignificantgapsremainaddressedeasierrobustapplicableepidemicsReal-timeepidemicnumber:Scopingapplicationschallenges

Similar Articles

Cited By (18)